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We simulate flow and dispersion of tracers in three-dimensional fractured geometries obtained with Voronoi
tessellations. “Fractures” are generated and discretized using a parallel in-house code. These “fractures” can
also be regarded as the high-permeability flow paths through the rock, or a network of the “super-k” channels.
Generated geometry contains multiply-connected matrix and fracture regions. The matrix region represents a
porous rock filled with solid, water, and oil. Tracers diffuse in both regions, but advection is limited only to
the fractures. The lattice-Boltzmann and random-walk particle-tracking methods are employed in flow and
transport simulations. Mass-transfer across the matrix–fracture interface is implemented using the specular
reflection boundary condition. Tracer partitioning coefficients can vary among the tracer compounds and in
space. We use our model to match a field tracer injection test designed to determine remaining oil saturation.
By analyzing time-dependent behavior of the fully-resolved, three-dimensional “fracture”–matrix geometry,
we show that the industry-standard approach may consistently overestimate remaining oil saturation. For a
highly heterogeneous reservoir system, relative error of the field-based remaining oil estimates may exceed
50%.

I. INTRODUCTION

Fluid tracers can illuminate flow and distribution of
immiscible fluids in the subsurface. These tracers are
injected to study natural or artificial processes and sys-
tems, such as aquifers1–4, oil5 and gas6 reservoirs, as well
as morphological and hydraulic properties of soils7, and
groundwater flows8,9. Tracer transport is governed by the
principles of chromatography10. The soluble and some-
times partitioning tracers are injected into the flowing
fluid phase, which carries them through the system of
interest; tracer interactions with the stationary phases,
e.g., rock matrix and/or immobile oil are a source of use-
ful information at the producing wells. Usually, tracers
are the easily detectable, “bright” chemical or radioactive
compounds11,12.

Motion of tracers in the subsurface is obscured by the
complexity of geological formations, and establishing re-
lations between tracer behavior and pore space geometry
is still an open question. One of the main difficulties is
the existence of multiple geometric length scales, formed
over multiple geological time scales, and the challenges
in providing detailed three-dimensional (3D) reconstruc-
tions of these geometries13,14. Computer simulations are
a useful tool, since they capture some of the features
of subsurface geometry and transport processes. In this
study, we address one of the key properties of subsur-
face rocks — presence of fractures or high permeability
flow channels — and perform transport simulations in
3D “fractured” rock geometries. Our simulation approach
incorporates fractures and rock matrix, as well as mass
transfer between them. Thus, we create effectively a
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dual-porosity system addressed previously by Warren and
Root15, Kazemi et. al.16, Ma loszewski and Zuber17, de
Smedt and Wierenga18, Geiger et. al.19. Our “fractures”
can also idealize the complex three dimensional networks
of very high rock permeability, such as the “super-k” chan-
nels in limestones20.

“Fractures” are generated using the polyhedral Voronoi
tessellations. Once a fractured geometry is obtained,
it is challenging to mesh it well enough to make the
high-fidelity flow and transport calculations possible21–24.
Often meshing is a major bottleneck in the overall model
performance. We use uniform cubic mesh and develop a
parallel discretization software to enable high-resolution,
fast meshing of the generated 3D fractured geometries.

After flow geometry is generated and meshed, we
perform transport simulations using lattice-Boltzmann
(LBM) and random-walk particle-tracking methods
(RWPT). Both methods are an alternative to the clas-
sical solution of advection–diffusion equation. LBM
and RWPT are well-suited for high-performance com-
puting systems, and render accurate results using regular
meshes25. RWPT does not introduce numerical dispersion,
but is subject to statistical noise, which makes genera-
tion of smooth concentration profiles computationally
demanding.

In this study, we validate in detail mass transfer be-
tween the “fractures” and matrix. After establishing the
simulation framework, we apply it to a practical prob-
lem of estimating remaining oil saturation from tracer
injection tests.

In summary, the presented simulation approach includes
the following key steps:

• Generate seed points and perform a Voronoi tes-
sellation on them, shrinking each Voronoi volume
towards its center to release void space for “frac-
tures”;
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• Initialize a uniform cubic mesh using the Voronoi
geometry obtained at the previous step;

• Simulate Stokes flow in the “fractures” with the
lattice-Boltzmann method using the initialized
mesh;

• Simulate the advection–diffusion transport and mass
transfer of tracers with the random-walk particle-
tracking method using the mesh and flow field from
the previous steps.

II. METHODS

A. Geometry generation and discretization

Our approach to obtaining three-dimensional fractured
geometry is based on the geometrical Voronoi tessella-
tion26. Polyhedral footprint — an inherent property of
our approach — appears in various formation-related pro-
cesses including drying, cooling, or recrystallization27,
which makes it an attractive way of creation of the frac-
tured geometries. In addition, polygonal/polyhedral fea-
tures exist in various natural formations, as shown in
Fig. 1. The high permeability flow channels in limestones,
the burrowing channels left by ancient shrimp, Thalassi-
noides, are shown in Fig. 2.

In this section, we describe the key geometry algorithm
steps and provide program implementation details.

1. “Fracture” generation from Voronoi tessellation

Voronoi tessellation has been used to generate frag-
ments in, for example, computer graphics33, or to imi-
tate damage of brittle rocks34,35. In a three-dimensional
Voronoi tessellation, one distributes a set of seed points in
the target volume V , and then splits V into the arbitrarily-
shaped polyhedra that fill V without gaps and overlaps.
Polyhedral shape of each Voronoi element originates from
the geometric rule according to which V is split. Each
Voronoi element contains the region of space closer to
a given seed point than to any of its neighbors. The
two upper panels of Fig. 3 show consecutive steps of the
Voronoi tessellation seeded by a choice of points in the
volume of interest. Statistical properties of regular and
random (Poisson) Voronoi tessellations are discussed in
detail by Kumar et. al.36 and Lucarini37.

We obtain a fractured geometry after the following
steps (see the schematic two-dimensional illustration in
the bottom panel of Fig. 3):

• Distribute seed points in the volume of interest;
the distribution pattern can be arbitrary, ordered
or random. This pattern plays a pivotal role in
the shape of the generated “rock fragments” or
“fractures” between them;

• Use Qhull software38 to perform Voronoi tessella-
tion on the seed points and obtain a polyhedral
tiling of space. The polyhedra share each of their
faces with one of the neighbors, and therefore the
entire tessellation can also be described as a set of
polyhedron faces that are polygons (planar objects)
oriented in three dimensions. In our simulations
the Voronoi geometry is made periodic in all three
Cartesian directions;

• Consider each polygon as a basis of a prism or, in
other words, a polyhedron with two parallel congru-
ent bases. Introducing normal ~n to the plane of a
polygon, the two bases of the prism are obtained
by two translations of the original polygon along ~n,
each in opposite direction but equal distance; the
interior of such a prism becomes a planar “fracture.”
This step can also be understood as shrinking each
Voronoi polyhedron towards its center to create
voids for fractures.

At this stage, the resulting geometry can be seen as a
set of prisms that is mapped onto a uniform cubic mesh
by initializing each mesh voxel as fracture or matrix,
according to the location of the voxel’s center, inside or
outside of the closest prism. The output cubic mesh is
then used as input for transport simulations.

We note that in standard Discrete Fracture Network
(DFN) approach fractures are modeled as the (D − 1)-
dimensional objects in a D-dimensional space: for exam-
ple, polygons in 3D. The (D − 1)-dimensional fractures
can be discretized using uniform cubic mesh39. Here we
use a different approach, we embed the D-dimensional
“fractures” of finite width in a D-dimensional space. The
additional computational effort is offset by the use of
supercomputing facilities and efficient program implemen-
tation in the low-level programming languages. On the
other hand, we avoid many intrinsic difficulties with mesh-
ing or flow and transport simulations, which arise from
the need to connect the (D − 1)-dimensional geometries
and fields with their D-dimensional counterparts.

2. Program implementation

Voronoi tessellation is accomplished with Qhull soft-
ware38. Qhull is called by the MATLAB routines to
perform pre- and post-processing steps for i) distribution
of seed points in the volume of interest, and ii) storing
the data on Voronoi faces into a file. This file is then used
by discretization software at the final step.

Our focus is the development of high-performance dis-
cretization code that maps arbitrary fractured volume
onto a discrete mesh in three dimensions. The code was
written in C language and parallelized.

The discretization code creates a uniform cubic mesh
and then uses Voronoi faces together with a prescribed
“fracture” width to introduce prisms (“fractures”) and to
mark each mesh voxel according to its location relative
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B: Kometan Formation, 
Zagros Basin, Kurdistan,

 North East Iraq

A: Bitumen-infilled fractures within
the Devonian Woodford Shale,

Oklahoma, USA

C: Tundra polygons, Deadhorse (Prudhoe Bay), Alaska, USA

FIG. 1. Occurrence of polygonal/polyhedral shapes in natural formations. A: Reprinted with permission from the study of An
et al. 28 (J. Pet. Sci. Eng. 157, 273 (2017)), Copyright 2017 Elsevier. B: Reproduced with permission from PhD thesis of
F. Rashid29. Copyright 2015 F. Rashid. C: Pictures reproduced from www.vickibeaver.com with permission of V. Beaver30.
Copyright 2011 V. Beaver
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FIG. 2. Left: A very large Thalassinoides suevicus burrow network in the Zohar Formation (Middle Jurassic, Callovian) of
Makhtesh Qatan in the Negev of southern Israel. Reproduced with permission of M. Wilson31. Copyright 2011 M. Wilson. Right:
Reconstruction of Mecochirus rapax in a Cretaceous Thalassinoides. a) In its burrowing life mode; b) Predominantly horizontal
Thalassinoides suevicus burrow systems showing two successive event levels, with Mecochirus in life position. Reproduced with
permission from the study of Carvalho, Viegas, and Cachao 32 (Palaios 22, 107 (2007)). Copyright 2007 Society for Sedimentary
Geology.

to the prism’s interior. The code iterates over Voronoi
polygons in the outer loop, constructs a prism, finds a
rectangular mesh subdomain enclosing the prism, and
in the inner loop processes all the voxels within this
subdomain, see the top panel of Fig. 4. Each voxel center
v is analyzed in three steps:

• The distance d to the closest Voronoi face plane is
checked, see Fig. 4b,

• If d is less than the half-width of the prism, then
projection v′ of the voxel center onto Voronoi face
plane is calculated (Fig. 4b);

• The code calculates the angle αtot between each pair
of polygon points and the projection v′ (Fig. 4c),
and if αtot = 2π then the voxel center v is located
within the “fracture” and marked accordingly.

The code is parallelized according to the Message Pass-
ing Interface (MPI) standard to enable use of computa-
tional facilities with distributed memory. We use a simple
one-dimensional decomposition that splits the simulation
domain — a uniform cubic mesh — into “slices”, one
slice per MPI process. Additionally, each MPI process
handles the Voronoi face prisms intersecting a given slice
(Fig. 5a).

3. Performance of discretization code

For performance tests we use a random distribution of
seed points for the Voronoi tessellation. The points are
distributed in the boxes of 20 × 5 × 5l3, 200 × 5 × 5l3,
and 2500 × 5 × 5l3, where l is an arbitrary length unit.
The density of seed points is one point per l3 (i.e., the
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FIG. 3. Top and middle panels show construction of the Voronoi tessellations as a function of the number of seed points in the
volume of interest. The bottom panel illustrates key steps of fracture generation and discretization that opens the resulting
geometry to flow and transport simulations.
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FIG. 4. Top: extraction of mesh voxels comprising a rectangular domain around a prism for further processing. Bottom: a) a
“fracture” of width w formed by two images of input Voronoi face. b) Calculation of the distance d between the mesh voxel v
and the Voronoi face plane, v′ is the projection of v onto Voronoi face if d < w/2. c) Calculation of the angles between the
projection v′ and all Voronoi face points P1...5 (c).

first geometry has 500 seed points). Replication of the
generated points to impose periodic boundary conditions
along all Cartesian directions, results in about 105, 106,
and 107 “fractures” per each generated geometry. Here-
after each geometry is discretized with the resolution of
256 mesh voxels per l, resulting in 1010, 1011, and 1012

of voxels, respectively. For these computational tasks we

vary the number of employed CPU cores. The left panel
of Fig. 5b shows scaling of computational performance
together with absolute computational time (in seconds).
In an additional performance test, we vary discretization
resolution (128, 256, 512 voxels per l) for the second ge-
ometry with 106 fractures. The corresponding numbers
of mesh voxels are about 1010, 1011, and 1012.
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Performance tests are done on the Shaheen II supercom-
puter (KAUST, Saudi Arabia) equipped with the Intel
Haswell E5-2698v3 CPUs. The results show acceptable
scaling up to several thousand CPU cores.

To our knowledge, the commonly used discrete fracture
network approach to generate fractures currently deals
with at most 104 fractures and 107 triangular mesh ele-
ments22,40. The methodology presented here is capable to
generate and mesh a much larger number of “fractures.”
The discretization procedure avoids difficulty with the
intersections of multiple fractures at one point, which is a
challenge for meshing (triangulation) of DFN geometries.
Namely, each fracture is processed independently, and
the mesh voxels at fracture intersections can be reinitial-
ized as many times as needed. Our code is not limited
to Voronoi tessellations and could be modified to mesh
various non-polygon planar objects. The large number of
the generated “fractures” enables, for example, introduc-
tion of several length scales, and the high discretization
resolution allows adding fine features to each fracture,
such as surface roughness.

B. Flow simulations: the lattice-Boltzmann method

To simulate Stokes flow in the generated “fracture”
geometries, we employ the Lattice-Boltzmann method
(LBM). LBM is a powerful approach for pore-scale sim-
ulations, which gained increased attention over recent
decades41,42. LBM does not solve the (Navier–)Stokes
equations directly, but recovers flow behavior through
simulation of evolution of a lattice gas. The lattice gas is
represented by a distribution function of its local “fluxes”
over lattice nodes. Each flux can propagate along a dis-
crete set of lattice links (j = 0, . . . , 18 in this study) con-
necting each lattice node to its neighbors (j = 1, . . . , 18)
as well as to itself (j = 0). Evolution with time t of a
flux along the j-th lattice link at the lattice node r can
be described by its distribution function fj(r, t):

f̃j(r, t) = fj(r, t) + Ω(fj), (1a)

fj(r + ejδt, t+ δt) = f̃j(r, t), (1b)

where δt denotes the simulation time step, ej is the lattice
vector along the j-th link, and Ω is the collision operator.
According to Eqs. (1), in each iteration LBM i) performs
the collision of fluxes at each lattice node (Eq. (1a)), and
ii) moves the fluxes among the lattice nodes along the
lattice links (Eq. (1b)). LBM is constructed in such a
way that with elapsing time the distribution function iter-
atively approaches its equilibrium state. The simulation
is halted when the distribution function stops changing,
or, alternatively, equilibrium is reached up to a given
accuracy.

LBM implementations differ in their collision operator.
One of the simplest and commonly used is the Bhatnagar–

Gross–Krook (BGK) collision operator, originating from
the dynamic theory of gases43. It contains only one pa-
rameter, the relaxation time, τ :

Ω(fj) = −
fj − feqj

τ
. (2)

The single relaxation parameter τ determines both the
relaxation rate of the distribution function towards its
equilibrium (feqj ), as well as the viscosity of the simu-

lated fluid44. When performing LBM simulations on the
micro-CT images, the bounce-back boundary condition is
commonly used. This boundary condition reflects back-
wards the fluxes facing solid lattice nodes. Combination
of the bounce-back BC and BGK model is well known for
its dependency of the simulated permeability on τ , e.g.
Ginzburg and d’Humières 45 .

Reformulation of the LBM matrix-collision model led to
the development of the multiple-relaxation-times collision
operator (MRT)46,47. In MRT, a collision occurs in the
space of hydrodynamic and kinetic moments (like density,
momentum, energy, energy flux), with the transformation
of the distribution function to the momentum space and
vice versa. The operator itself can be written as

Ω(fj) = −(M−1)jkŜki(mi(r, t)−meq
i (r, t)), (3)

where the components mi represent the moment space
to which the distribution function fj is converted via

the transformation matrix M. Ŝ denotes the diagonal
matrix, whose elements, ŝi, are the reciprocal values of
the relaxation times τi associated with the moments mi,
i = 0, . . . , 18. The multiple relaxation times in (3) provide
the capability of adjusting each parameter τi individually.
This capability poses the yet-unanswered questions about
the particular choices of those parameters. Adjustment of
multiple MRT relaxation rates is useful, for example, in
full Navier–Stokes simulations, where it improves stability
in high Reynolds number flows. It was suggested that
for the Stokes-only simulations a reduced version of MRT
operator, or the two-relaxation-times operator (TRT), is
a better choice48,49. In TRT, all MRT rates are combined
into two groups, and each group is assigned a single relax-
ation rate, τν and τf . In the simulations, one adjustable
rate (τν) controls viscosity of the simulated fluid while the
second one (τf) appears free-tunable, but in fact controls
the resulting permeability k. In particular, if the quantity
Λ = (τν − 0.5)(τf − 0.5) is kept constant, k stays fixed up
to machine accuracy for any geometry50. Therefore, the
simulated permeability depends on a particular choice of
Λ. In our study, we use a single Λ-value of 3/16 for all
simulations49.
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FIG. 5. a) Schematic illustration of one-dimensional domain decomposition between MPI processes: each process analyzes
its own subset of mesh voxels as well as part of the Voronoi prisms (fractures) crossing the domain of that process. b) The
speedup of discretization performance vs. increase of CPU cores for a random fracture distribution. Performance of 32 cores is
normalized to one, and further 128, 512, 2048, 8192 cores are used for the larger CPU numbers. The left panel shows speedup
for the geometries with the different numbers of fractures (left legend), discretized at 256 voxels per unit length. The right panel
deals with the geometry of 106 fractures discretized at different resolutions shown in the right legend. The numbers near each
data point denote the corresponding absolute execution time in seconds of the discretization procedure.

C. Tracer dynamics: the random-walk particle-tracking
method

After obtaining a stationary flow field from the lattice-
Boltzmann simulations, we use the Random-Walk Particle-
Tracking approach (RWPT)51–54 to simulate transport of
tracer particles in the generated “fractured” geometries.
RWPT uses a large number of infinitely small particles,
and in each iteration displaces each particle with the
diffusive and advective components:

∆r = r(t+ ∆t)− r(t) =

= v(r)∆t+ ξ
√

2Dregion( r(t) )∆t
(4)

where r is the tracer particle coordinate at time t, ∆t is
the time step, v is the velocity vector at location r, and
Dregion is the diffusion coefficient in the region of the voxel
whose center is closest to r. The term ξ denotes a random

vector obtained from the standard normal distribution
of N(0, 1). Tracer concentration can be found from the
number of tracers occupying a given number of voxels.
The variation of Péclet number is obtained from linear
scaling of velocity components using linearity of the Stokes
flow solution.

Cubic mesh used in the LBM simulations provides
voxels of two types, fracture and matrix. (We also refer
to these voxel types as “regions”.) This mesh is used
for tracer simulations, too. The “fracture” voxels are
assumed to contain only water, while the matrix voxels
consist of water, oil, and rock, see Fig. 6a. In this study,
the effective tracer concentration in a matrix voxel, Cm,
is a function of oil (water) saturation, So (Sw), and the
matrix porosity, φm. The oil (water) saturation is the
fraction of the matrix pore volume occupied by oil (water).
For example, if φm = 0.1 and So = 0.1, oil will occupy
1% of the total matrix volume.

We consider two types of tracer particles: the “parti-
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tioning,” or active tracers, and the “non-partitioning,” or
passive, conservative ones. The partitioning tracers are
soluble in water and oil, while the non-partitioning ones
are only water-soluble. Their concentrations in matrix
voxels, Cp

m and Cnp
m , can be defined as

Cp
m =

ntrm
nvoxm φm

, (5a)

Cnp
m =

ntrm
nvoxm φmSw

(5b)

where ntrm is the number of tracers occupying nvoxm number
of matrix voxels. The corresponding concentration of par-
titioning and non-partitioning tracers in nvoxf fracture
voxels, Cp

f and Cnp
f , is

Cp
f = Cnp

f =
ntrf
nvoxf

, (6)

because we assume Sw = 1.0 in fracture region. At
equilibrium, the concentration of tracer particles of the
same type in fracture and matrix regions is the same.
For example, if φm = 0.2, Sw = 1.0, and nvoxf = nvoxm ,
then there are five times fewer tracers in matrix region
at long simulation times.

The partitioning coefficient,

K = Co/Cw, (7)

determines the equilibrium tracer concentration ratio be-
tween the immobile oil and water phases located only in
matrix region. Here K is independent of the water phase
located in fracture region. For partitioning tracers, vari-
ation of K changes their equilibrium concentration in
matrix region, which also impacts their concentration
in fracture region. Equality of concentrations in the
two regions at equilibrium can be formulated using K as
follows:

ntrf
nvoxf

=
ntrm
nvoxm

1

φm(Sw + SoK)
, or (8a)

R =
ntrf
ntrm

=
nvoxf

nvoxm

1

φm(Sw + SoK)
. (8b)

The last equation can be used to validate accuracy of
the simulation code by comparing the simulated and
analytical values of the ratio R = ntrf /n

tr
m.

Tracer particles are in constant motion, and to ensure
correct model behavior, the following requirements must
be satisfied:

• independence of equilibrium tracer concentration
on the tracer diffusion coefficients in fracture and
matrix regions;

• linear dependence of tracer concentration on the
matrix porosity; and

• maintenance of the correct equilibrium tracer con-

centration after a change of oil (water) saturation
and partitioning coefficient.

Tracer particles are not aligned with the lattice voxels
and move without restrictions between voxels of the same
region. When moving into a different region, each par-
ticle can change diffusion coefficient or can be reflected
from the interface between these regions, see Figure 6b,c.
Variation of the diffusion coefficient and the probability
of tracer reflection are the basic tools to meet the require-
ments above. To control tracer dynamics, we use the
approach discussed by Bechtold et al. 55 and Daneyko
et al. 56 . Let us introduce the probability for a tracer
particle to enter matrix from a fracture voxel, Pf→m,
and for the move in the opposite direction, Pm→f . A
desired ratio of equilibrium concentrations between the
matrix and fracture regions can be obtained for the
different values of Pf→m and Pm→f , but at their fixed
ratio. From the point of reducing computational demand,
one of these probabilities can always be set to 1. Simi-
lar arguments are applicable to the diffusion coefficients
within the fracture region, Df , and the matrix region,
Dm. We use the following rules to control motion of each
tracer particle:


Pf→m = K ′φm

√
Dm/

√
Df and Pm→f = 1

if K ′φm
√
Dm/

√
Df < 1,

Pm→f = (K ′φm
√
Dm/

√
Df)
−1 and Pf→m = 1

otherwise.

(9)

Here K ′ = Sw +KSo with K defined in (7). For K = 0
the model recovers behavior of non-partitioning tracer,
while partitioning tracer is simulated with K > 0.

When a tracer particle crosses the interface between
different regions, it changes its diffusion coefficient. Con-
sider the case when particle jumps from a fracture to
a matrix voxel, see Figure 6c. The original tracer jump
vector ∆rf→m is calculated using the time step ∆t and
the diffusion coefficient in fracture, Df . ∆rf→m can
be seen as the sum of two vectors, one located in the
fracture (∆rf) and another in the matrix (∆rm) vox-
els. Let us consider a non-linear time-splitting scheme:√

∆t =
√

∆tf +
√

∆tm, where ∆tf and ∆tm are the times
spent by tracer in fracture and matrix regions, respec-
tively. Using this time-splitting scheme and the Einstein
diffusion relationship, we apply the following correction
to take into account the change in diffusion coefficient for
the jump vector ∆rf→m:

∆rf→m
∗ = ∆rf + ∆rm

√
Dm/Df , (10a)

∆rm→f
∗ = ∆rm + ∆rf

√
Df/Dm, (10b)

where the last equation defines a jump in the opposite
direction, from matrix to fracture voxels.
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FIG. 6. a) Schematic presentation of the combination of pore-scale and effective medium approaches used in this work. Tracer
simulations are performed in the discretized fractured geometry with voxels of fracture and matrix types. The flow field in
fracture voxels is obtained from LBM simulations. b) Implementation of the effective medium approach: for a jump from
fracture voxel, a partitioning tracer can enter matrix voxel through water or oil phases, while a non-partitioning one through
water only; rock reflects both tracers. Presence of rock, oil, and water in matrix region is not resolved explicitly and is simulated
using a probability of reflection. c) Correction of a tracer jump, when the tracer enters a voxel with a different diffusion
coefficient.

1. Boundary conditions for RWPT

A special attention is given to the choice of the bound-
ary condition (BC) applied to the tracer particle crossing
the interface between the matrix and fracture regions.
Particle jump can be denied with some probability, and
there are different ways of implementing this rule in a sim-
ulation code. Szymczak and Ladd 57 summarized several
approaches, such as “rejection”, “interruption”, “multiple
rejection”, and “specular reflection”. Rejection cancels
the jump if it is not allowed, and a tracer particle does
not change its coordinate. Multiple rejection regenerates
a stochastic part of a particle jump (the last term in (4)),
until the particle ends up at the allowed location. Inter-
ruption BC i) splits the original jump into two vectors,
prior and after the point of intersection with the interface,
and ii) moves the tracer particle along the first vector
and then performs a new random jump with the magni-
tude of the second vector. Specular reflection is similar
to interruption, but the second vector is oriented in the
direction of mirror reflection of the original jump. As
shown by Szymczak and Ladd 57 , only specular reflection
preserves correct concentration profile close to the reflec-
tive wall. (Here “close” means the distance of a single
tracer jump.) In the case of a fully-reflective interface, the
distortion of concentration profile due to the employed
BC can be reduced by decreasing the time step (smaller
tracer jump). However, this is not the case when the
interface is semi-reflective, as we demonstrate below.

Some aspects of our simulation approach, such as accu-

racy of the lattice-Boltzmann simulations25 and hydrody-
namic dispersion were addressed previously (pp. 40–42
in58). Here, we assess only accuracy of the cross-interface
mass transfer using several tests. The first test is a com-
parison of simulation results with an analytical solution
by Scott, Tung, and Drickamer 59 . This solution provides
a one-dimensional, time-dependent distribution of con-
centration between two cells of equal length separated
by an interface. The domain containing these two cells
is confined by the impermeable walls from left and right.
Initially, the left cell has a concentration C0 = 1 while the
right cell is empty; each cell can have a different diffusion
coefficient. Tracers are allowed to diffuse through the
interface with a discontinuity in the diffusion coefficient.
Partitioning (or distribution) coefficient K in this study
equals K = Cright/Cleft, while Scott et al. used its recip-
rocal value. After solving the classical diffusion equation,
the authors provide a solution for the concentration in
left and right cells in terms of series, cf. eqs. (23) and
(24) in59 requiring roots of their eq. (25). We have solved
(25) in59 up to 1000 roots with matlab using the cheb-
fun package60. Please note that our correction to (23)
replaces C0m with C0.

Fig. 7a compares tracer simulation results with the
solution of Scott et al. for three time intervals: 1, 10, and
10000 tracer particle jumps or iterations. We vary par-
titioning coefficient (K = 0.2 and 5), and use non-equal
diffusion coefficients in fracture and matrix regions,
Dm = 0.25Df . While our typical simulation takes about
109 iterations, analysis of the shorter time scales provides
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better insight into the employed numerical approach. In
the case of specular reflection, Fig. 7a shows the almost
identical results for 10000 time steps, while there is some
difference for one and a few time steps. This difference
can be explained by the assumption of instantaneous con-
centration equilibrium at the interface used by Scott et al.
via the prescribed interface condition, see the discussion
of eqs. (7)–(9) in Scott, Tung, and Drickamer 59 . In fact,
it takes some time to achieve equilibrium at the interface.
We conclude that in this regard our tracer model imitates
reality better than the solution of Scott, Tung, and Drick-
amer 59 . The multiple rejection boundary condition fails
to recover correct concentration profile in all considered
cases.

Fig. 7b addresses the importance of selection of bound-
ary condition in tracer simulations, when a semi-reflective
interface presents. In the case of a fully-reflective wall, the
multiple rejection BC may distort tracer concentration
near the wall57. For a semi-reflective wall, this distortion
changes flux of tracers between two phases, which results
in an incorrect distribution of equilibrium concentrations.
To demonstrate a possible impact of a concentration dis-
tortion in higher dimensions, we have performed a simula-
tion with the input parameters providing uniform tracer
concentration for the whole simulation domain. Domain
size is 2× 2× 2 voxels, and periodic boundary conditions
are applied along all Cartesian directions. Panel b in
Fig. 7 reveals that, depending on simulation parameters,
multiple-rejection BC may introduce a significant concen-
tration maldistribution, while specular reflection recovers
the correct behavior.

As the last validation test, we have quantified relative
error in the concentration ratios for several geometri-
cal configurations: layered, “chess”, and random (top of
Fig. 7c), all with periodic boundary conditions. The error
is calculated according to eq. (8b), introducing Ranalyt

as the reference equilibrium concentration ratio between
fracture and matrix regions, and Rsim as its simulated
counterpart. The layered configuration can be assumed
as the reference flat interface, while the chess configura-
tion adds corners that may degrade accuracy of specular
reflection due to the multiple reflections of a single jump
of a tracer particle. We note that our numerical imple-
mentation allows each particle jump to have an arbitrary
number of reflections. Random configuration is obtained
from a 32x32x32 cube filled with 50% of fracture and
50% of matrix voxels. The model parameters are as fol-
lows: Dm/Df = 1 or 0.1, K = 5, So = 1.0, φm = 0.1.
A variation of the diffusion coefficient ratio should not
change equilibrium distribution; however, it is related to
the change in reflection probability, and therefore may
change the numerical results. Additionally, we vary tracer
time step (∆t) to address its possible impact on the reduc-
tion of numerical error. We use the default value of ∆t,
resulting in root-mean-squared-displacement of ∼ 0.167
of voxel edge, and its value reduced five times, i. e. the
time step of 0.2∆t.

For all geometrical configurations and diffusion coeffi-

cient ratios, the specular reflection BC outperformed mul-
tiple rejection (blue/red symbols vs. green/black ones).
Specular reflection creates the largest error in random con-
figuration and the highest difference between the diffusion
coefficients in matrix and fracture regions. Reducing
time step (circles vs. dots) improves accuracy of specu-
lar reflection, mostly in random configuration, but does
not allow to go significantly below 1%. For the multiple
rejection BC, reduction of the time step does not reduce
the error, because this BC distorts tracer concentration
profile near the interface on a distance of a single jump.
We note that for some sets of parameters, multiple rejec-
tion can produce smaller or larger error relative to the
one shown in Fig. 7c. For a random configuration and
specular reflection BC, the case of Dm/Df = 0.1 results in
error higher than that in Dm/Df = 1. This error can be
reduced using smaller time steps. We attribute the error
increase to numerical errors in floating-point arithmetics.

In the tests described above tracer particles diffuse
without advection. Adding flow may impact accuracy of
the results, and this is discussed later.

III. RESULTS AND DISCUSSION

In petroleum industry, remaining oil saturation is esti-
mated from the production histories of tracer compounds
mixed in with a slug of water injected into a partially
depleted reservoir61. In the particular case of carbon-
ate reservoirs in the Middle East, tracer flow geometry
is dominated by the super-k channels and/or fractures.
Consistently with the notation in this work, we will call
both of these reservoir rock features “fractures.” The rock
matrix has a much lower permeability and the fluids there
are almost or truly immobile. We assume that the immo-
bile reservoir fluids filling the rock matrix are water and
oil. Two types of tracers are injected, partitioning and
non-partitioning, see subsection II C, eqs. (7),(9). The
flow of injected water carries tracers through the “frac-
tures” in the reservoir, and the tracers can diffuse in and
out of the immobile reservoir fluids. Partitioning trac-
ers spend more time in immobile fluids due to the finite
probabilities of i) diffusion in both water and oil, and ii)
entering matrix through the water and oil phases. The
non-partitioning tracers are confined only to the water
phase.

After passing through the reservoir, the histories of
concentrations of each tracer in produced water can be
estimated from a sampling observation well or producer.
The remaining oil saturation can then be estimated from
the following patented empirical equation62:

Sest
o =

Tp − Tnp
Tp + Tnp(K − 1)

, (11)

where Tp and Tnp are the peak (maximum concentra-
tion) locations for the exit times of partitioning and non-
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FIG. 7. a) Comparison of the numerical distribution of tracer concentration with the one-dimensional analytical solution of Scott,
Tung, and Drickamer 59 . The simulations are performed in two voxels of different regions, confined by impermeable walls from left and
right. Results are shown for three times. In simulations, two boundary conditions are used: specular reflection (circles) and multiple
rejection (dots). Black arrows indicate the root-mean-squared-displacement of a tracer in each region. b) Illustration of equilibrium tracer
maldistribution caused by the boundary condition unsuitable for mass transfer across an interface. For the chosen parameters, correct
tracer distribution is uniform across the simulation domain. c) Relative error in the equilibrium concentration ratio R (see eq. (8b)) vs.
simulation time (in RWPT time steps) for different geometrical configurations. The simulation parameters are: Dm/Df = 1 or 0.1, K = 5,
So = 1.0, φm = 0.1.
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partitioning tracers, respectively. We note that one could
use the entire tracer concentration histories to estimate oil
saturation, but in reality recording tails of those histories
is difficult due to the long tracer retention times. Equa-
tion (11) provides the fraction of oil in the total liquid
phase accessible to tracers meaning that the reference oil
saturation can be defined as follows:

Sest,∗
o =

oil volume

oil + total water volume
=

=
Soφm(1− Φf)

Φf + φm(1− Φf)
.

(12)

Here Φf denotes the fracture porosity or the ratio of
the number of fracture voxels and their total amount.
We assume that oil occupies only matrix while water is
located in matrix and fracture regions.

To analyze behavior of the presented model, we approx-
imate the tracer tests described above. Using our Voronoi
tessellation approach, we generate two sets of fractured
geometries, originating from cubic and random distribu-
tion of 3 × 3 × 256 = 2304 seed points in Fig. 8. Both
geometries are periodic in all directions. For the cubic
geometry, edge of each matrix block is assumed to have
the length of 0.5m before the introduction of fractures.
Random geometry has the same number of seed points,
but with a different spatial arrangement. The fracture
porosity Φf is chosen close to 4.6% in both geometries.
With the discretization resolution of 256 voxels per 0.5 m,
each fracture has the aperture of 5.6 voxels in random ge-
ometry or 4.0 in cubic one. Fracture porosity of 4.6% can
be seen as an average value between fractured formations
(below 1%) and geometries with super-k channels (above
10%)63,64.

The matrix porosity is set to φm = 0.2 while the sat-
urations of fluids filling each matrix block are So = 0.2
for oil and Sw = 1 − So = 0.8 for water. According to
equation (12), such a choice of simulation parameters
results in Sest,∗

o ≈ 0.161.

Tracer diffusion coefficients are equal in the fracture
and matrix regions (Df = Dm). Tracer simulations are
performed with different number of tracer particles, rang-
ing from 2 · 104 to 106, and for different simulation times,
between 108 and 1010 iterations. These simulation pa-
rameters are needed to i) reproduce smooth estimated
oil saturation curves at short time scales, and ii) achieve
longer elapsed physical times within the computational
time limits imposed by the supercomputing laboratory.

For the cubic “fracture” geometry, tracers are injected
in the plane indicated by the red dashed lines in Fig. 8.
For the random geometry, tracers are distributed uni-
formly throughout the fracture region. A uniform initial
distribution of tracers is equivalent to averaging many
simulation runs, each with a delta-pulse injection at a
different location within the geometry. Such an approach
is possible because for each tracer not only absolute co-
ordinate, but also displacement from its origin can be
tracked.

The next parameter to be chosen for the simulations
is Péclet number that quantifies dominance of advective
transport over the diffusive one. We define Péclet number
as Pe = lv/Df , where l is the characteristic length, v is
the interstitial flow velocity, and Df is the tracer diffusion
coefficient in fracture region. l is taken as (Vavg)1/3

where Vavg is the average volume of the rock matrix block
before introducing fractures (or average Voronoi volume
after the tessellation). Flow rates are chosen so that
Pe = 20, Pe = 1000, Pe = 10000, and Pe = 40000. As
will be shown later, values of oil saturation determined
for low Péclet numbers, such as Pe ≈ 20, and for small
interwell distances demonstrate behavior quantitatively
different from that for Pe = 1000 or higher.

In our analysis, we strive to: a) perform simulations
in the diffusion-dominated regime (Pe = 20) and b)
achieve realistic exit times for the distributions of tracers.
For orientation, we consider the experimental field data
from Sanni et al. 5 . The authors reported the distance of
∼ 610 m between tracer injection and detection (injector–
producer distance). Their data suggest that the maxima
of produced tracer concentrations are at ∼ 250, ∼ 350,
and ∼ 450 days for the partitioning coefficients of K = 0,
2, and 4, respectively. They do not provide explicitly
information about the flow rates used in the test. In our
simulation setup, similar exit times for the maxima of
concentration curves are obtained for Pe = 40000. This
translates into the interstitial flow rate of water in the
“fractures” of 8·10−5 m/s (or 6.91 m/d) assuming l = 0.5 m
and Df = 10−9 m2/s. The corresponding Darcy or super-
ficial velocity is then 8 · 10−5 × 0.046 = 3.68 · 10−6 m/s
or 0.32 m/d.

The left panels in Fig. 9 show the produced (exit)
concentration histories of the non-partitioning and par-
titioning tracers for various flow rates in the two flow
geometries. The area under each curve is normalized to
one, even though not all of the histories are fully recorded.
In other words, only the exit times, but not absolute
values of the distribution functions should be analyzed.
Each distribution curve is obtained from six histograms
with a slightly varied number of bins. Our goal here is to
consider statistical variation of the obtained results. To
determine the timing of maximum concentration, 30% of
the highest points in each histogram are fit with a 4-th
order polynomial, and the polynomial maxima determine
Sest
o . Six values of Sest

o allow to find their mean and
calculate the 95% confidence interval; both are shown in
Fig. 9.
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FIG. 8. Two geometries used in transport simulations. Each geometry includes 3 × 3 × 256 = 2304 rock matrix blocks. For the
cubic geometry shown are the first 48 (out of 256) rock blocks in the longitudinal direction; the same length is depicted for the
random geometry. Both geometries have periodic boundary conditions. So (Sw) is oil (water) saturation in each rock matrix
block; φm is its porosity. Φf is the fracture porosity. The diffusion coefficient of a tracer is identical inside the fractures and
matrix. The inset shows a small subvolume of the random geometry discretized at the resolution of 256 voxels per 0.5 m. The
red dashed line shows the injection location for tracers in the cubic geometry.

The right panels in Fig. 9 present estimated oil satura-
tion. Initially, the estimated oil saturation is zero, because
the maxima locations for each tracer coincide. As time
elapses, the distance between the maxima starts to in-
crease. Some tracers are “trapped” by the matrix, while
others travel with flow. Because of diffusion, the former
leave the matrix and the latter enter it. After sufficient
time, tracers explore both matrix and the high-velocity
“fractures,” and the situation starts to repeat itself. This
time corresponds to the traveled distance L, after which
Sest
o demonstrates the close-to-asymptotic behavior. As

Fig 9 shows, L can vary from tens of meters for Pe = 20
to several kilometers for the realistic flow rates obtained
with Pe = 40000. This length is similar for the cubic and
random geometries, and depends on the size of the matrix
blocks rather than their shapes.

Starting from Pe = 1000, the estimated oil saturation
curve demonstrates a maximum near Sest

o,max ≈ 0.25 before
descent to its close-to-asymptotic behavior. The value
of Sest

o,max remains approximately constant with further
increase of flow rate for both geometries and chosen par-
titioning coefficients. This means that for the chosen
simulation parameters, the maximum of Sest

o mostly de-
velops well before realistic flow rates are achieved. The
formation of such a maximum can be seen as a source of
overestimation of Sest

o .

The close-to-asymptotic value of oil saturation Sest
o es-

timated by our model is identical to Sest,∗
o ≈ 0.161 for

the infinite injector–producer distance at lower flow rates
(Pe = 20 and Pe = 1000), Fig. 9, right. With further
increase of the flow rate, the random geometry starts
to overestimate Sest,∗

o while Sest
o in cubic geometry stays

approximately constant. We attribute this overestimation
to the increasing numerical error, which is discussed be-
low. At high flow rates, Pe ≥ 10000, the reference value
of remaining oil saturation can be overestimated by up
to 50–70%, depending on the injector–producer distance.
For field-scale flow rate of Pe = 40000 the distance needed
to observe the close-to-asymptotic behavior is of the or-
der of a few kilometers, which may exceed well spacing
in a typical reservoir (≈ 1 km). If this is the case, the
existence of a maximum in Sest

o curve may dominate field
data. We remind that in this study, the diffusion coeffi-
cients of tracers in the fracture and matrix regions are
assumed to be equal to reduce numerical error (Fig. 7c).
In reality, the diffusion coefficient in rock matrix can be
an order of magnitude smaller than in bulk fluid. This will
additionally increase the equilibration time and, therefore,
distance required for the close-to-asymptotic behavior in
estimated oil saturation.

In tracer injection tests designed to estimate remaining
oil saturation it is common practice to use tracers with
several partitioning coefficients K5,65. This is done to
improve reliability of the experimentally obtained values
of Sest

o . As our results demonstrate, variation of K within
a practical range (K ≈ 2 . . . 4) has little impact on Sest

o ,
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Pe = 20 1 000 10 000 40 000
K = 0 −0.0 (2.0) 0.4 (0.4) 0.6 (13.8) −0.7 (52.3)
K = 2 0.4 (2.1) 0.2 (−0.8) 0.7 (11.1) 1.1 (42.0)
K = 4 0.7 (0.4) 0.2 (−0.7) 0.4 (8.9) 0.8 (33.5)

TABLE I. Relative errors in the concentration ratio (eq. 8b) be-
tween the fracture and matrix regions for the cubic (random)
geometries. The errors are listed as percentages. Significant
error is observed for the high Péclet numbers in the random
geometry. Positive values denote larger number of tracer par-
ticles in the fracture region than their expected equilibrium
concentration.

and does not help to avoid the overestimation caused by
the existence of a maximum in Sest

o curve (Fig. 9, right).

Our findings provide additional insights into the inter-
pretations of tracer field tests that may have a significant
impact on the economics of future oil reservoir develop-
ment.

The validation section of this paper neglects flow, which
may affect the concentration ratios (mass balance) of non-
partitioning and partitioning tracers between fracture
and matrix regions. Table I provides this information.
Error in the concentration ratios stays about 1% in the
cubic geometry for all values of the simulation param-
eters. In random geometry, significant errors are ob-
served for Pe ≥ 10000. This error behavior can be at-
tributed to the high cell Péclet number, Pecell, quanti-
fying dominance of advection over diffusion at a given
discretization level. For cell Péclet number, the size of
elementary mesh element (which is 1) is taken as the
characteristic length. Simulations with Pe = 40000 and
the discretization resolution of ∼ 256 voxels per matrix
block result in Pecell = 40000/256 ≈ 156. Similarly,
Pecell = 10000/256 ≈ 39 for Pe = 10000. This value is
high relative to those suggested by Maier et al. 66 and
the references therein, in which the upper limit was con-
sidered to be Pecell ≈ 20. We note that these authors
discussed Pecell in the context of hydrodynamic dispersion
in packings of impermeable spheres with the porosity of
about 40%. Here we have a different numerical scenario of
tracer dispersion in a low-porosity fractured system with
mass transfer between the fracture and matrix regions.
Therefore, direct comparison of restrictions on Pecell is
not appropriate. However, Table I suggests that the ma-
trix boundaries that are not aligned with the underlying
lattice, as in random geometry, and high flow rates (Pecell
at least 40) introduce significant concentration error even
in the case of specular reflection boundary condition. This
concentration error results in higher close-to-asymptotic
values of estimated oil saturation Sest

o for random geom-
etry compared with cubic one (two bottom right panels
of Fig. 9). Increase of discretization resolution to reduce
Pecell will change the exact shape of estimated oil satura-
tion curves for random geometry, but will not change our
qualitative conclusions.

IV. CONCLUSIONS

Our practical goal was to evaluate the industry standard
estimates of remaining oil saturation in the heterogeneous
carbonate reservoirs. With our model, we quantified that
the commonly used expression (11) may overestimate the
true oil saturation with relative error of 50–70%, depend-
ing on the injector–producer distance. For the infinitely
long reservoirs, industry-standard model of tracer tests
holds.

Our model relies on the three-dimensional fractured
geometries generated with Voronoi tessellations. A set of
seed points is introduced, Voronoi tessellation on them
is performed, and after shrinking each Voronoi cell the
released void space is considered as “fractures.” Each
Voronoi cell represents rock matrix. Using two spatial
arrangements of seed points, cubic (regular) and ran-
dom, we have created two fractured geometries with 2304
Voronoi cell each. These geometries are meshed using a
high-performance code at a spatial resolution of 256 mesh
nodes per V 1/3, where V is the volume of Voronoi cell.
This mesh is then used to simulate water flow with the
lattice-Boltzmann method and water-tracer dispersion
with the random-walk particle-tracking method.

Simulation of tracer dispersion deals with the diffu-
sion of tracers in fracture and matrix regions, flow
in the fracture region, and mass transfer between the
fracture and matrix regions. The matrix region con-
sists of rock mass, oil and water. The tracers are allowed
to have different partitioning coefficients, or the ratios
between the equilibrium concentrations of the tracers in
oil and water. We have performed an in-depth valida-
tion of the correct mass-transfer behavior, for both time-
dependent and equilibrium profiles close to the fracture–
matrix interface. This validation has demonstrated ac-
ceptable accuracy of the employed specular reflection
boundary condition, including such non-trivial cases as
corners in three dimensions.

The described numerical approach was employed to
represent the field-scale tracer tests used to estimate
remaining oil saturation, So, in an oil reservoir. Our
approach allows to i) prescribe an input oil saturation
value Sest,∗

o , and ii) estimate Sest
o from the tracer concen-

tration histories detected in producing wells at different
locations downstream. We observe significant variation
of the estimated oil saturation with the distance traveled
by the tracers. This distance is comparable or exceeds a
typical well spacing in a Middle East oil reservoir when
realistic flow rates are considered. For the considered
simulation parameters (two geometries, two partitioning
coefficients) with input oil saturation of Sest

o = 0.161 the
model predicts i) the transient values of Sest

o up to ≈ 0.28,
and ii) the accurate value of oil saturation of Sest

o ≈ 0.161
for the infinitely-long injector–producer distance. The
overestimation of Sest

o is caused by the existence of a
maximum in Sest

o along the injector–producer distance
curve. This maximum starts to develop at the flow rates
significantly below the field-scale ones.
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FIG. 9. The left-hand figure panels show the distribution of tracer exit times for the injector–producer distance of 563.2 m. The
red lines near top of each curve are the 4-th order polynomial fits for accurate localization of each distribution maximum. The
areas under each distribution are normalized to one, considering only shown points. The right-hand column shows estimated oil
saturation Sest

o using eq. (11) at various distances between tracer injection and detection. Each value of Sest
o is shown together

with its standard error (95% confidence interval). Magenta dashed line denotes the reference value of Sest
o ≈ 0.161, see eq. (12).

Data are shown for non-partitioning (K = 0) and partitioning tracers (K = 2 and K = 4), and for cubic and random geometries
(Fig. 8).

For the reference oil saturation we use eq. (12) which
includes the remaining oil saturation in the matrix So,
matrix porosity φm, and fracture porosity Φf . While the
value of φm is commonly determined experimentally using

core samples, the porosity of fractures or super-k channels
is known with much smaller precision. Omission or inac-
curate estimation of Φf in eq. (12) results in Sest,∗

o ≡ So

and, therefore, in an underestimation of the remaining



Simulation of tracer transport in fractured formations 15

oil saturation (Sest
o < So), even in the limit of infinite

injector–producer distance.
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“The Virtual Element Method for large scale Discrete Fracture Net-
work simulations: fracture-independent mesh generation,” Proc.
Appl. Math. Mech. 15, 19–22 (2015).

25S. Khirevich and T. Patzek, “Behavior of numerical error in pore-
scale lattice Boltzmann simulations with simple bounce-back rule:
Analysis and highly accurate extrapolation,” Phys. Fluids 30,
093604 (2018).

26A. Okabe, Spatial tessellations: concepts and applications of
Voronoi diagrams, 2nd ed. (John Wiley & Sons, 2000).

27C. W. Passchier and R. A. J. Trouw, Microtectonics, 2nd ed.
(Springer Berlin Heidelberg, 2005).

28C. An, B. Yan, M. Alfi, L. Mi, J. E. Killough, and Z. Heidari,
“Estimating spatial distribution of natural fractures by changing
NMR T2 relaxation with magnetic nanoparticles,” J. Pet. Sci.
Eng. 157, 273–287 (2017).

29F. N. Rashid, The Kometan Formation: Reservoir characteristics
of tight carbonates in the Western Zagros Basin, Ph.D. thesis,
University of Leeds, England (2015), Chapter 3, p. 39.

30Beaver, Vicki, “Tundra polygons,” (2011), accessed: 04-07-2019.
www.vickibeaver.com.

31M. Wilson, “Wooster Geologists,” (2011), accessed: 04-07-2019.
32C. Carvalho, P. Viegas, and M. Cachao, “Thalassinoides and

its producer: Populations of Mecochirus buried within their bur-
row systems, Boca Do Chapim Formation (Lower Cretaceous),
Portugal,” Palaios 22, 107–112 (2007).

33S. Raghavachary, “Fracture generation on polygonal meshes us-
ing voronoi polygons,” in ACM SIGGRAPH 2002 Conference
Abstracts and Applications, SIGGRAPH ’02 (ACM, New York,
NY, USA, 2002) pp. 187–187.

34E. Ghazvinian, M. Diederichs, and R. Quey, “3D random Voronoi
grain-based models for simulation of brittle rock damage and
fabric-guided micro-fracturing,” J. Rock Mech. Eng. Geotech.
Eng. 6, 506–521 (2014).

35M. Adda-Bedia, R. Arias, M. Ben Amar, and F. Lund, “Dynamic
Instability of Brittle Fracture,” Phys. Rev. Lett. 82, 2314–2317
(1999).

36S. Kumar, S. K. Kurtz, J. R. Banavar, and M. G. Sharma,
“Properties of a three-dimensional Poisson-Voronoi tesselation: A
Monte Carlo study,” J. Stat. Phys. 67, 523–551 (1992).

37V. Lucarini, “Three-Dimensional Random Voronoi Tessellations:
From Cubic Crystal Lattices to Poisson Point Processes,” J. Stat.
Phys. 134, 185–206 (2009).

38C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull
algorithm for convex hulls,” ACM Trans. Math. Software 22, 469–

http://dx.doi.org/10.1021/acs.est.8b03285
http://dx.doi.org/10.1029/95WR00174
http://dx.doi.org/10.1021/es990082v
http://dx.doi.org/10.1021/es990082v
http://dx.doi.org/10.1021/es9901720
http://dx.doi.org/10.1021/es9901720
http://dx.doi.org/10.2118/91-03-08
http://dx.doi.org/10.1029/2000WR000110
http://dx.doi.org/10.1029/2000WR000110
http://dx.doi.org/10.1002/hyp.13160
http://dx.doi.org/ 10.1016/0022-1694(73)90106-6
http://dx.doi.org/ 10.1016/0022-1694(73)90106-6
http://dx.doi.org/10.2172/910642
http://dx.doi.org/10.2172/910642
http://dx.doi.org/10.2172/910642
http://dx.doi.org/10.1038/srep15880
http://dx.doi.org/ 10.1103/PhysRevLett.121.265501
http://dx.doi.org/10.2118/426-PA
http://dx.doi.org/10.2118/5719-PA
http://dx.doi.org/10.1016/0022-1694(85)90064-2
http://dx.doi.org/10.1016/0022-1694(85)90064-2
http://dx.doi.org/ 10.1016/0022-1694(79)90105-7
http://dx.doi.org/10.2118/148130-PA
http://dx.doi.org/ 10.1016/j.jcp.2018.10.005
http://dx.doi.org/10.1016/j.jhydrol.2017.08.052
http://dx.doi.org/10.1016/j.jhydrol.2017.08.052
http://dx.doi.org/10.1002/pamm.201510006
http://dx.doi.org/10.1002/pamm.201510006
http://dx.doi.org/10.1063/1.5042229
http://dx.doi.org/10.1063/1.5042229
http://dx.doi.org/ 10.1016/j.petrol.2017.07.030
http://dx.doi.org/ 10.1016/j.petrol.2017.07.030
http://omniterra.blogspot.com/2012/07/today-is-our-last-day-on-beluga-survey.html
www.vickibeaver.com
http://woostergeologists.scotblogs.wooster.edu/2011/07/10/wooster%E2%80%99s-fossil-of-the-week-ancient-shrimp-burrows-middle-jurassic-of-israel/comment-page-1/
http://dx.doi.org/10.1145/1242073.1242200
http://dx.doi.org/10.1145/1242073.1242200
http://dx.doi.org/10.1016/j.jrmge.2014.09.001
http://dx.doi.org/10.1016/j.jrmge.2014.09.001
http://dx.doi.org/10.1103/PhysRevLett.82.2314
http://dx.doi.org/10.1103/PhysRevLett.82.2314
http://dx.doi.org/ 10.1007/BF01049719
http://dx.doi.org/10.1007/s10955-008-9668-y
http://dx.doi.org/10.1007/s10955-008-9668-y


Simulation of tracer transport in fractured formations 16

483 (1996).
39A. Fourno, C. Grenier, A. Benabderrahmane, and F. Delay, “A

continuum voxel approach to model flow in 3D fault networks:
A new way to obtain up-scaled hydraulic conductivity tensors of
grid cells,” J. Hydrol. 493, 68–80 (2013).

40J. Hyman, C. Gable, S. Painter, and N. Makedonska, “Conform-
ing delaunay triangulation of stochastically generated three dimen-
sional discrete fracture networks: A feature rejection algorithm
for meshing strategy,” SIAM J. Sci. Comput. 36, A1871–A1894
(2014).

41C. K. Aidun and J. R. Clausen, “Lattice-Boltzmann Method for
Complex Flows,” Annu. Rev. Fluid Mech. 42, 439–472 (2010).

42D. Maggiolo, F. Picano, and M. Guarnieri, “Flow and dispersion
in anisotropic porous media: A lattice-Boltzmann study,” Phys.
Fluids 28, 102001 (2016).

43P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for
collision processes in gases. I. Small amplitude processes in charged
and neutral one-component systems,” Phys. Rev. 22, 511–525
(1954).

44Y. Qian, D. d’Humières, and P. Lallemand, “Lattice BGK models
for Navier-Stokes equation,” Europhys. Lett. 17, 479–484 (1992).

45I. Ginzburg and D. d’Humières, “Multireflection boundary con-
ditions for lattice Boltzmann models,” Phys. Rev. 68, 066614
(2009).

46d’Humières, “Generalized lattice Boltzmann equations Rarefied
Gas Dynamics: Theory and Simulations,” Prog. Astronaut. Aero-
naut. 159, 450–458 (1992).

47D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, and
L.-S. Luo, “Multiple-relaxation-time lattice Boltzmann models
in three dimensions,” Phil. Trans. R. Soc. Lond. A 360, 437–451
(2002).

48I. Ginzburg, F. Verhaeghe, and D. d’Humières, “Two-relaxation-
time lattice Boltzmann scheme: About parametrization, velocity,
pressure and mixed boundary conditions,” Commun. Comput.
Phys. 3, 427–478 (2008).

49S. Khirevich, I. Ginzburg, and U. Tallarek, “Coarse- and fine-
grid numerical behavior of MRT/TRT Lattice-Boltzmann schemes
in regular and random sphere packings,” J. Comp. Phys. 281,
708–742 (2015).

50D. d’Humières and I. Ginzburg, “Viscosity independent numerical
errors for lattice Boltzmann models: From recurrence equations
to “magic” collision numbers,” Comp. Math. Appl. 58, 823840
(2009).
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