Quantitative Three-Dimensional Structure-Transport Analysis in Chromatographic Beds of Arbitrary Cross-Section

\qquad ©

Siarhei Khirevich, ${ }^{1}$ Alexandra Höltzel, ${ }^{1}$ Dzmitry Hlushkou, ${ }^{1}$ Andreas Seidel-Morgenstern, ${ }^{2}$ and Ulrich Tallarek ${ }^{1}$

Department of Chemistry, Philipps-Universitat Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany E-mail addresses: khirevic@staff.uni-marburg.de, tallarek@staff.uni-marburg.de Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany

Introduction

The microchannel geometry is mainly determined by the fabrication methods used and inherently non-cylindrical. The cross-sections of LC-microchip separation columns include semicircular, quadratic, rectangular, trapezoidal, and elliptical geometries, often with irregularly-angled corners and curved sides. By employing numerical methods, we investigated an influence of the channel cross-section, interparticle porosity, and fluid velocity on the hydrodynamic dispersion. Numerical simulations were performed on supercomputers and included the following steps: i) packing generation, ii) flow simulation, and iii) hydrodynamic dispersion simulation. We analyzed hydrodynamic dispersion within packings of circular, rectangular, semicircular, and trapezoidal cross-sections. The lateral dimensions and interparticle porosity of the packings were chosen to represent typical values encountered in microchip liquid chromatography systems

Basic cross-sectional geometries

Figure 1. Porosity (interparicile void fraction) distribution in the near wall resion of a
coylindricical packing with mean porosity of $\varepsilon_{a x}=0.42$. Comparison with experimental data.

Figure 3. a) Front view of generated packings with basic cross-sectional geometries (top) and projections of particle centers (bottom). The average bed porosity of $\varepsilon_{a}=0.42$ (left), $\varepsilon_{a}=0.48$ (right). b) Porosity distributions in packings with circularand quadratic cross-section along the indicated arrows at $\varepsilon_{\mathrm{sm}_{\mathrm{m}}}=0.42$ and $\varepsilon_{\varepsilon_{w}}=0.48$. the simulation ${ }^{2}$ (Figure 2).

- Confined packings of uniform spherical particles were generated using the Jodrey-Tory approach. Packings were confined by hard walls in the XY-plane and periodic boundary conditions were used along the Z-direction
- Distribution of porosity near the confining wall agrees well with the experimental data ${ }^{1}$ (Figure 1).
- The longitudinal dimension of packings was chosen to avoid the occurrence of recorrelation effects in
- The generated packings were discretized with a spatia
resolution of 30 nodes per particle diameter (d_{p})

- The presence of corners gives rise to the formation of channels of advanced fluid flow velocity ${ }^{3}$.
- The reduced symmetry of non-cylindrical packings effects a longer characteristic length of the solute molecules for lateral equilibration between different velocities ${ }^{3}$
- Non-cylindrical packings are much stronger affected by higher bed porosities than cylindrical packings ${ }^{3}$.
- At low bed porosities hydrodynamic dispersion of non-cylindrical packings comes close to that of the cylindrical packings ${ }^{3}$.

Figure 4. a) Velocity profiles for packings with the basic cross-sectional geometries attwo selected bed porosities, Figure 4.a) Velocity profiles for packings with the basic cross-seccional geomemiries attwo selected bed porosities,
$\varepsilon_{\mathrm{m}}=0.42$ and $\delta_{\mathrm{s}}=0.48 \mathrm{~b}$. T) The schematic illustrates characteristic transverse lengths for each geometry which have to be traversed by the solute moleculese in orded to rerializ complete exchange (equilibration) between
different velocities. c) Left: effective axial dispersion coefficient D_{d} (normalized by the bulk molecular diftusion coerficient D_{m}) as a function of the bed porosity simulated for an inert tracer at $\mathrm{Pe}=10$. For the circular and quadratic packing geometries seven values in the range of $0.40 \leq \delta_{\varepsilon_{0}} \leq 0.50$ were computed, while for the packed rectangular and semicircular geometries values at two selected bed porosities of $\varepsilon_{m}=0.42$ and $\varepsilon_{\mathrm{s}}=0.48$ were calculated. Righ: Normalized axial dispersion coefficient of an inert tracer as a function of dimensionless diffusive
time $t_{t}=2 D_{m}^{m} \| d_{p}^{2}$ for fixed beds with a porosity of $\varepsilon_{s}=0.48$. For each containergeometry two curves are shown, one calculated at P Pe $=10$ and one at $\mathrm{Pe}=20$. Each curve represents hontan anergeoge of three independentent calculataions
stating with statring with the generation of packings from three dififerents seeds. The actual values for t_{t} provided in the figure
represent the time for each geometry (and value of Pe) after which asymptotic behavior in D_{2} / D_{m} is observed.
-The limitations of restricted space in the top part of the trapezoidal conduits effect a more ordered, denser packing structure ${ }^{4}$.
-With regard to efficiency, trapezoidal packings of larger aspect ratio (width-to-height ratio) are preferable over smaller aspect ratio packings ${ }^{4}$.

Figure 6. a) Fluid flow velocity profiles at $\mathrm{Pe}=10$ for six trapezoidal sphere packings with
average bed porosity of $=0.48$. The
 (top) and rectangular geometries with a side-aspect ratio of 5 (bottom). Base angles of the
trapezoidal cross-sections are: 85° (left), 75° (center), 65° (right). b) Normalized axial dispersion coefficients at ate $=10$ for all investigated sphere packings as a a function of the base angle of the

Time and length scales of eddy dispersion ${ }^{5}$

Figure 7. a) Definitions, locations, and scales of the different velocity inhomogenemities contributing to eday dispersion accordings to Giddingss. Reprinted with permission from Tallarek et al.' Copyright 1998 American
Chemical Society. b) Front view onto the two types of monotisperse sohere ackekns studied in this work, Chemical Society. b) Front view onto the two types of monodisperse sphere packings studied in this work,
together with representative lateral porosity distributions (taken along the arrows and averaged over the whole length of the packings). Confined packings have a cylinder-to-particle diameter ratio of $d d d d=20$, a length of $6553.6 d_{p}$ and a bed porosity of $\varepsilon_{\mathrm{mw}}=0.40$. Buk (unconfined) packings have dimensions of $10 \mathrm{~d}_{\mathrm{p}} \times 10$. $\times 68.27 \mathrm{~d}$, with periodic boundary cond

(1)

$$
+\frac{2 \lambda_{2}}{1+\left(2 \lambda_{2} / \omega_{2}\right) P e^{-1}}
$$

(1)
$\underbrace{\left(2 \lambda_{2} / \omega_{2}\right)}_{\text {short-range interchannel }}$

$\tau_{\mathrm{D}}=\mathrm{t} 2 \mathrm{D}_{\mathrm{T}} / \mathrm{d}_{\mathrm{d}}^{2}$
$\overbrace{}^{\text {trans-channel }}$
$h_{L}=\frac{2 \gamma}{P e}+\frac{2 \lambda_{1}}{1+\left(2 \lambda_{1} / \omega_{1}\right) P e^{-1}}$
(2)

interchanne trans-column
b)

	γ	λ_{1}	ω_{1}	λ_{2}	ω_{2}	λ_{3}	ω_{3}	R^{2}
$\begin{array}{\|c\|} \hline \text { Bulk } \\ \text { packings, this } \\ \text { work } \end{array}$	0.64	0.41	0.0038	0.223	0.15	-	-	0.998
$\begin{array}{\|c} \text { Confined } \\ \text { packings, this } \\ \text { work } \end{array}$	0.67	0.41	0.0038	0.86	0.436	2.61	0.023	${ }^{0.9996}$
$\underset{\substack{\text { Giddings' } \\ \text { estimation } \\ \\ \hline \\ \hline}}{ }$	-	0.5	0.01	0.5	0.5	${ }^{0.022}$	${ }_{\text {O }}^{0.4}$	

Figure 8. Development of longitudinal (a) and transverse (b) dispersion coefficients vs. dimennionness stransverse dispersive time $\tau_{0}=2 D_{F} t d_{0}^{2}$ in buik (top) and confined cylindrical (bottom) packings $\left(\varepsilon_{\mathrm{g}}=0.378\right)$. Reduced velocities $\mathrm{Pe}=$
$\mathrm{u}_{\mathrm{m}} \mathrm{d}_{\mu} \mathrm{D}_{\mathrm{m}}\left(d_{p}=5 \mu \mathrm{~m}, \mathrm{D}_{\mathrm{m}}=1.5 \times 10^{\circ} \mathrm{m}^{2} \mathrm{~s}\right)$ are given for each curve. Characteristic average transverse dispersion lengths: $\left\langle\ell_{T}\right\rangle_{\text {muk }} \approx 1.4 \mathrm{~d}_{p}\left\langle\ell_{\eta}\right\rangle_{\text {comereat }} \approx 10 \mathrm{~d}_{p}$,

Figure 9 . Reduced longitudinal plate height $h_{L}=H_{l} / d_{p}$ vs. reduced velocity $P==u_{m} d_{d} / D_{m}$ in the range of $0.5 \leq \mathrm{Pe} \leq 500$ for bulk packings $\left(\mathrm{a}, \varepsilon_{\varepsilon}=0.378\right)$ and $0.1 \leq \mathrm{Pe} \leq 500$
for confined cylindrical packings (b, $\varepsilon_{\mathrm{E}}=$ for confined cylindrical packings (b, $\varepsilon_{m}=$
$0.40)$. Each ydata point represents
average from five generated packings.

Acknowledgements

We thank RZG (Rechenzentrum Garching, Germany) and GWDG (Gesellschaft für wissenschaftliche Datenverarbeitung Göttingen, Germany) for providing computational resources and technical support.

References

de Klerk, A. Voidage variation in packed beds at small column to particle diameter ratio. AIChE J. 2003, 49, 2022-2029.
Maier, R. S.; Kroll, D. M.: Bernard, R. S.; Howington, S. E.; Peters, J. F.; Davis, H. T. Pore-scale simulation of dispersion. Phys. Fluids 2000, 12, 2065-2079.
Khirevich, S.; Höltzel, A.; Hlushkou, D.; Tallarek, U. Impact of conduit geometry and bed porosity on flow and dispersion in noncylindrical sphere packings. Anal. Chem. 2007 , 79, 9340 -9349
Khirevich, S.; Hötzzel, A.; Hushkou, D.; Seidel-Morgenstern, A.; Tallarek, U. Structure-transport analysis for particulate packings in trapezozidal microchip separation channels. Lab Chip 2008, 8, 1801-1808, 'Gidddins, J. C. Dynamics of Chromatography, Partt 1: Principles and Theory, Marcel Dekker: New York, 1965.
Giddings, J. C. Dynamics of Chromgtonsern, A., 1
Tallarek, U. Bayer, E.ं. Guiochon, G. Study of dispersion in packed chromatographic columns by pursed field g grat

