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Introduction Random packings of spherical particles confined in a cylindrical conduit are a good model for particle- Computer simulations allow a systematic study of the influence of these parameters on the resulting hydrodynamic dispersion 

based chromatographic columns. A fundamental property of confined particulate packings is the geo- in the packing. We employed a combination of advanced numerical techniques and high-performance computing systems (super-

metrical wall effect, which originates in the impossibility to pack spherical particles tightly against a hard, flat column wall. This re- computers) to perform three-dimensional pore-scale simulations of hydrodynamic dispersion in cylindrically confined mono-

sults in porosity (void space fraction) oscillations across the column cross-section, which persists over a length of several particle di- disperse random sphere packings. Such packings were generated under a systematic variation of the column diameter, the bed poros-

ameters from the column wall. For a mobile phase percolating through the packing, the porosity oscillations translate to a mal- ity, and the degree of heterogeneity in the packing microstructure. The time evolution of the dispersion coefficient was monitored up 

distribution of the flow velocity, which increases hydrodynamic dispersion and decreases the separation efficiency of the column. to the asymptotic limit. Simulations were carried out over a broad range of reduced velocities, 0.05= =500, to observe diffusion-

The amplitude and length of the porosity oscillations depend on various factors, such as the column diameter, the average bed po- dominated, transient, and advection-dominated mass transport regimes. 

rosity of the packing, the average particle size, and the particle size distribution. 

n

Figure 1. Top row: front view on the confined sphere packings of  generated in cylindrical containers with cylinder-to-particle diame-
  ter ratio of 10, 15, 20, 25, and 30 at porosity of 0.43. Middle row: reduced plate height h  H / d  vs reduced velocity n  u  d D  , where  is the height equiv-=L L p av p m

alent to a theoretical plate, d  the sphere diameter,  u  the average mobile phase velocity, and D  is the solute diffusivity in the mobile phase. Each data point p av m
6represents the average of three generated packings. Solid lines are the best fits of the generalized Giddings equation  (1) to the reduced plate height data. The 

first term on the right hand side in equation (1) accounts for the effect of molecular diffusion while the second term describes eddy dispersion as the sum of three 
contributions — transchannel, short-range interchannel, and transcolumn (l and w are universal structural parameters characteristic of each contribution). i i

The value of the obstruction factor g in equation (1) was determined by monitoring the long-time limit of the time-dependent diffusion coefficient, while the 
values of l and w (transchannel contribution) were obtained from the periodic (unconfined) packings of the same porosity and packing type as their confined 1 1

counterparts. Bottom row: Dependence of the parameters for the short-range interchannel (l and w) and transcolumn (l and w) contributions on packing 2 2 3 3

protocol, cylinder diameter, and porosity. Values were obtained from the best fits of the comprehensive dataset of the middle row figures to equation (1).
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Confined random packings of monosized hard 

spheres were generated in cylindrical containers 
1,2using a modified Jodrey–Tory (JT) algorithm.  

Generated packings have dimensions (denoted 

as “cylinder diameter” × “cylinder length”) of 

10d ×1638d , 15d ×3072d , 20d ×6553.6d , p p p p p p

25d ×9830d , and 30d ×9830d , which are suf-p p p p

ficient for performing both statistical analysis of 

the packing microstructure and simulation of 

the hydrodynamic dispersion within the void 

space of a packing. The packings have porosities 

(void space fraction) of 0.40, 0.43, and 0.46. JT 

algorithm distributes randomly particle centers 

in the simulation domain and iteratively re-

moves overlaps between spheres by spreading 

apart of two closest sphere centers on each itera-

tion. Amount of spheres in the packing defines 

the final packing porosity, while variation of the 

initial sphere center positions and the magni-

tude of an individual displacement of the closest 

sphere pair on each JT iteration enables genera-

tion of the sphere packings with different micro-

structure.  In other words, JT allows us to vary 

packing preparation protocol (or “packing ty-

pe”), which results in the generation of more or 

less heterogeneous packings (referred to as 

“Rx0.001” and “Sx2”, respectively) also in the 

case of fixed packing dimensions and porosity. 

Pore-scale simulations of fluid flow in the 

void space of the generated packings were done 

using the lattice Boltzmann method (LBM), and 

simulations of the transport of inert tracers were 

performed with the Random Walk Particle 

Tracking method (RWPT). Both LBM and RWPT 

are well suited for parallel computing, and 

allowed us to perform efficient high-perfor-

mance simulations on one of the world’s fastest 

supercomputing system JUGENE (Jülich, Ger-

many): the largest simulations for the packings 

with spatial dimensions of 30d ×9830d  were p p

performed on 98 304 processor cores, and re-

quired about 50TB of system memory.

Simulation details
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Voronoi volume distributions
A sensitive analysis tool for probing the local packing density and disorder in 

packed beds is the determination of Voronoi cells, which contain all points 
3closer to a given sphere center than to any other  (see more detailed 

explanation in the caption of Figure 3). Recently we have demonstrated that 

statistical moments (standard deviation and skewness) of the distribution of 

Voronoi volumes (volumes of Voronoi cells) are in good correlation with the 

plate height values in case of the periodic (unconfined) packings of different 

porosities and packing protocols. In this study we extend previously employed 

analysis to the case of confined packings. Figure 4 shows a schematic overview 

of the approach used to determine spatial distributions of the free Voronoi 

volumes. As can be seen in Figure 5, derived distributions reflect the difference 

in the simulated plate height values shown in the middle row of Figure 1.

Figure 3. Tessellation of the confined Rx0.001 and Sx2 packings (with porosity of 0.43, generated in  
3,4cylindrical containers with diameter of 10 d ) into the Voronoi cells.  A Voronoi cell is the generalization p

of a Wigner–Seitz cell for disordered structures. For a packing of monosized spheres (or disks in 2D) it is 
the polyhedron (polygon in 2D) that contains all points closer to a given 
sphere center (disk center in 2D) than to any other. A two-dimensional 
Voronoi cell of disk “i” is illustrated in the caption figure by the yellow 
polygon. Red nodes and yellow ridges are points located on equal distance 
from four (three in 2D) and three (two in 2D) spheres, respectively. Green 
nodes indicate locations where yellow ridges were truncated by the con-
fining wall of the cylinder. Voronoi cell can be quantified by its volume, 
and a difference between the Voronoi volume of the cell and volume of the 

sphere located in this cell is termed as “free Voronoi volume” (or free Voronoi area in 2D). Gray region of 
the yellow polygon shown in the caption figure illustrates free Voronoi area of disk “i”.

i
fr

ee
s

( 
V

 
 )

fr
ee

g(
 V

 
 )

10 dp

Figure 2. a) Schematic representation of the procedure used to determine lateral porosity distribution profiles 
in the generated sphere packings. The procedure included i) cover of the whole volume of the packing with the 
uniform cubic lattice; ii) each lattice voxel was assigned to “0” or “1” depending on the location of the voxel cen-
ter, inside or outside the closest sphere, respectively; iii) calculation of the mean local porosity values by averag-
ing amount of the fluid voxels as indicated by the arrow. b, c, d) Porosity distributions for the cylinders of 
Rx0.001 and Sx2 packing types with cylinder-to-particle diameter ratio of 30, 20, and 10, and porosity of 0.40, 
0.43, and 0.46. Profiles were calculated along indicated arrows over the whole packing length.

a)

b)

c) d)

0.46

Rx0.001

0.43
0.40

Sx2

A well-known approach to estimate heterogeneity of a confined 

random sphere packing is to analyze the lateral porosity 

distribution of the packing. In the confined packings porosity 

distributions show damped oscillations in the near-wall region, 

resulting from the inability of the spheres to form a close packing 

against the flat wall. As can be seen in Figure 2, porosity oscilla-

tions with higher amplitude are observed for more homogeneous 

(at least, according to the packing preparation protocol and 

corresponding plate height values) packings. 

Figure 4. Top: Schematic 
representation of the proce-
dure used to determine pro-
files of the statistical mo-
ments of the free Voronoi 
volume distribution. The pro-
cedure is similar to the one 
described in the caption of 
Figure 2, except that each 
lattice voxel is assigned to the 
value of free Voronoi volume 
of the closest sphere. Right: 
Slices of the distribution of 
free Voronoi volumes in the 
packings with porosity of 
0.43 and cylinder-to-sphe-re 
diameter ratio of 10. The 
packings were generated 
using Rx0.001 and Sx2 pack-
ing protocols.

Figure 5. Profiles of average, standard deviation, and skewness of the 
free Voronoi volume distributions, calculated along indicated arrows 
over the whole packing length for the packings with porosities of 0.40, 
0.43, and 0.46 generated using Rx0.001 and Sx2 packing protocols.

Conclusion

Rx0.001
packing type

Sx2
packing type

3free Voronoi volume (in d )p

>0.7<0.17 0.34 0.51

15 dp 20 dp 25 dp 30 dp

30 dp 10 dp15 dp20 dp25 dp

The presented simulation approach enabled i) generation of the random sphere packings with systematically varied geometrical parameters 

(diameter of the cylindrical packing container (d ), porosity (e), and the packing preparation protocol (P)), and ii) high-resolution pore-scale c

5simulations of transport (flow and hydrodynamic dispersion) in the void space of the generated packings. Carefully conducted transport simulations  resulted in an 

excellent fit of the generalized Giddings equation (1) to the simulated plate height data, resolving of the individual contributions of the dispersion term in (1), and 

demonstration of the systematic influence of d , e, and P on these contributions. In addition to the well-known fact of the influence of e and d  on the plate height values, it c c

was shown a strong impact of the packing preparation protocol on h: the difference between the optimal plate height values of the packings with fixed d  and e but c

different P can achieve three times. Geometry of the packing pore space was analyzed by i) “classical” approach based on the radial porosity distributions, and ii) a novel 

method based on the Voronoi volume distributions. Only the latter method demonstrated correlation between the geometrical descriptors and corresponding values of h.
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