High-Performance Computing of Hydrodynamic Dispersion in Cylindrical Packed Beds of Different Aspect Ratios

Siarhei Khirevich, Alexandra Höltzel, and Ulrich Tallarek
Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany E-mail: khirevich@gmail.com, tallarek@staff.uni-marburg.de

Introduction

Random packings of spherical particles confined in a cylindrical conduit are a good model for particl based chromatographic columns. A fundamental property of confined particulate packings is the geo metrical wall effect, which originates in the impossibility to pack spherical particles tightly against a hard, flat column wall. This r sults in porosity (void space fraction) oscillations across the column cross-section, which persists over a length of several particle diameters from the column wall. For a mobile phase percolating through the packing, the porosity oscillations translate to a mal distribution of the flow velocity, which increases hydrodynamic dispersion and decreases the separation efficiency of the column. The amplitude and length of the porosity oscillations depend on various factors, such as the column diameter, the average bed po rosity of the packing, the average particle size, and the particle size distribution.

Computer simulations allow a systematic study of the influence of these parameters on the resulting hydrodynamic dispersion in the packing. We employed a combination of advanced numerical techniques and high-performance computing systems (super computers) to perform three-dimensional pore-scale simulations of hydrodynamic dispersion in cylindrically confined mono disperse random sphere packings. Such packings were generated under a systematic variation of the column diameter, the bed poros ity, and the degree of heterogeneity in the packing microstructure. The time evolution of the dispersion coefficient was monitored up to the asymptotic limit. Simulations were carried out over a broad range of reduced velocities, $0.05 \leq v \leq 500$, to observe diffusiondominated, transient, and advection-dominated mass transport regimes.

Figure 1. Top row: front view on the confined sphere packings of Rx 0.001 and $\mathrm{Sx2}$ types generated in cylindrical containers with cylinder.to-particle diame-
ter ratio of $10,15,20$, 25 , and 30 at porosity of 0.43 . Middle row: reduced plate height $\mathrm{h}_{\mathrm{l}}=\mathrm{H}_{\mathrm{L}} / \mathrm{d}_{p}$ vs reduced velocity $v=\mathrm{u}_{\mathrm{u}} \mathrm{d}_{/} / \mathrm{D}_{m}$, where H_{i} is the heighte equiv-
 represents the average of three generated packings. Solid lines are the best fits of the generalized Giddings equation ${ }^{6}$ (1) to the reduced plate height data. The
firstterm on the righth hand side in equation (1) accounts for the effect of molecular diffusion while the second term describes eddy dispersion as the sum of three first term on the right hand side in equation (1 accounts for the e effect of molecular diffusion while the second term describes eddy dispersion as the sum of three
contribution - transchanel, shor--range interchannel, and ranscoumn ($\lambda_{\text {and }} \omega_{i}$ are universal structural parameters characteristic of each ocontribution).
The value of the obstruction factor γ in equation (1) was determined by monitoring the long.time limit of the time-dependent diffusion coefficicent, while the The value of the obstruction factor γ in equation (1) was determined by monitoring the long-time limit of the time-dependent diffusion coefficient, while the
values of λ_{1} and ω_{1} (rranschannel contribution) were obtained from the periodic (unconfined) packings of the same porosity and packing type as their confined

Simulation details

Confined random packings of monosized hard spheres were generated in cylindrical container using a modified Jodrey-Tory (JT) algorithm.'. Generated packings have dimensions (denoted as "cylinder diameter" \times "cylinder length") of $10 d_{p} \times 1638 d_{p}, \quad 15 d_{p} \times 3072 d_{p}, \quad 20 d_{p} \times 6553.6 d_{p}$ $25 d_{p} \times 9830 d_{p}$, and $30 d_{p} \times 9830 d_{p}$, which are suf ficient for performing both statistical analysis of the packing microstructure and simulation of the hydrodynamic dispersion within the void
space of a packing. The packings have porositie space of a packing. The packings have porosities
(void space fraction) of $0.40,0.43$, and 0.46 . JT (void space fraction) of $0.40,0.43$, and 0.46 . JT
algorithm distributes randomly particle centers algorithm distributes randomly particle centers
in the simulation domain and iteratively removes overlaps between spheres by spreading apart of two closest sphere centers on each iter tion. Amount of spheres in the packing defines the final packing porosity, while variation of the initial sphere center positions and the magnitude of an individual displacement of the closes sphere pair on each $J T$ iteration enables genera tion of the sphere packings with different micro structure. In other words, JT allows us to va packing preparation protocol (or "packing type "), which results in the generation of more or
less heterogeneous packings (referred to as "Rx0.001" and "Sx2", respectively) also in the case of fixed packing dimensions and porosity.
Pore-scale simulations of fluid flow in the
oid space of the generated packings were done void space of the generated packings were done using the lattice Boltzmann method (LBM), and simulations of the transport of inert tracers were performed with the Random Walk Particle Tracking method (RWPT). Both LBM and RWP are well suited for parallel computing, and allowed us to perform efficient high-perfor-
mance simulations on one of the world's fastest mance simulations on one of the world's fastest
supercomputing system JUGENE (Jülich, Gersupercomputing system JUGENE (Jülich, Ger-
many): the largest simulations for the packings with spatial dimensions of $30 \mathrm{~d}_{\mathrm{p}} \times 9830 \mathrm{~d}_{\mathrm{p}}$ wer performed on 98304 processor cores, and re quired about 50TB of system memory.

Figure 3. Tessellation of the confined Rx0.001 and $\mathrm{Sx2}$ packings (with porosity of 0.43 , generated in
cylindrical containers of of a Wigner-Seitz cell for disordered structures. For a packing of fols monosized spheres. (or cisks in 2 DD) it is
is
 sphere center (disk center in 2D) than to any other. A two-dimensional
Voronoi cell of disk " il ' is illustrated in the caption figure by the yellow polygon. Red nodes and yellow ridgese are points located on equal distance
from four (three in 2 D) and three (two in 2 D spheres, respectively. Green from four (three in 2D) and three (tww in 2 D) spheres. respectively. Green
nodes indicate locations where yellow ridges were truncated by the con. nodes indicate locations where yellow ridges were truncated by the con-
fining wall of the cylinder Vorono cell can be quantified by its volume,
and a difference between the Voroonoi volume of the cell and volume of the sphere located in this cell is termed as "free Vorenoi volume" (or free Voronoi area in 2D). Gray region of

Porosity distributions

well-known approach to estimate heterogeneity of a confined andom sphere packing is to analyze the lateral porosity distribution of the packing. In the confined packings porosity distributions show damped oscillations in the near-wall region,
resulting from the inability of the spheres to form a close packing against the flat wall. As can be seen in Figure 2, porosity oscilla tions with higher amplitude are observed for more homogeneous (at least, according to the packing preparation protocol and corresponding plate height values) packings.

distance (in d_{p})

distance (in $_{\text {d }}$)

[^0]Voronoi volume distributions

A sensitive analysis tool for probing the local packing density and disorder in packed beds is the determination of Voronoi cells, which contain all points closer to a given sphere center than to any other ${ }^{3}$ (see more detailed explanation in the caption of Figure 3). Recently we have demonstrated that statistical moments (standard deviation and skewness) of the distribution of Voronoi volumes (volumes of Voronoi cells) are in good correlation with the plate height values in case of the periodic (unconfined) packings of different porosities and packing protocols. In this study we extend previously employed analysis to the case of confined packings. Figure 4 shows a schematic overview of the approach used to determine spatial distributions of the free Voronoi volumes. As can be seen in Figure 5, derived distributions reflect the difference in the simulated plate height values shown in the middle row of Figure 1.

Conclusion The presented simulation approach enabled i) generation of the random sphere packings with systematically varied geometrical parameters (diameter of the cylindrical packing container (d_{f}), porosity (ε), and the packing preparation protocol (Π)), and ii) high-resolution pore-scale simulations of transport (flow and hydrodynamic dispersion) in the void space of the generated packings. Carefully conducted transport simulations ${ }^{5}$ resulted in an excellent fit of the generalized Giddings equation (1) to the simulated plate height data, resolving of the individual contributions of the dispersion term in (1), and demonstration of the systematic influence of $\mathrm{d}_{c}, \varepsilon$, and Π on these contributions. In addition to the well-known fact of the influence of ε and d_{c} on the plate height values, it was shown a strong impact of the packing preparation protocol on h: the difference between the optimal plate height values of the packings with fixed d_{c} and ε but different Π can achieve three times. Geometry of the packing pore space was analyzed by i) "classical" approach based on the radial porosity distributions, and ii) a nove method based on the Voronoi volume distributions. Only the latter method demonstrated correlation between the geometrical descriptors and corresponding values of h.

Acknowledgments

References

Khirevich, S., Daneyko, A., Holzel, A.; Seidel-Morgenstern, A.; Tallarek, U. Statistical analysis of packed beas, the origin ofshe

[^0]: Figure 2. a) Schematic representation of the procedure used to determine lateral porosity distribution profiles in the generated sphere packings. The procedure included i) cover of the whole volume of the packing with the
 uniform cubic lattice ii) each lattice voxel was assigned to "" " " " "1 depending on the location of the voxel cen
 ter inside or outside the closest sphere, respectively iii) calculation of the mean local poosit ter, inside or outside the closest sphere, respectively, iiii) calculation of the mean local porosity values by averag-
 ing amount of the fluid voxets as indicatec by the arrow $\mathbf{b}, \mathbf{c} \boldsymbol{d}$) Porosity distributions for the cylinders of ing amount of the fluid voxels as indicated by the arrow \mathbf{b}, \mathbf{c}, d) Porosity distributions for the cylinders of
 Rx0.001 and Sx2 packing types with cylinder-to-particle diameter ratio of 30,20 and 10 , and porosity of 0.40 ,

