Morphology-Transport Relations for Packed Beds: From Metric Properties to Structural Descriptors of Diffusion and Hydrodynamic Dispersion

Introduction
Over last decades computer simulations became powerful tool for understanding and quantification ransport in various porous media including chromatography columns. In our work we perform three-dimensional simulations of flow, diffusion, and hydro dynamic dispersion in computer generated and physically reconstructed [1] packings of closely-packed spherical particles. The former proved to be a good model for systematic investigation of transport in particulate columns, while the
latter actually contains information on the real-life pore structure of packed microcapillary and acts as a validation geometry for computer simulations. For three-dimensional reconstruction we employed confocal laser scanning micros copy (CLSM) which enabled assessment of the capillary pore space with high resolution (30 nm per voxel or 66 voxels per average particle diameter), and, after successive analysis of the scanned images, obtaining coordinates and diameters of particles in capillary, as well as centers and semi axes of ellipses approxi-
mating the capillary wall. This geometrical information was enough to perform practically resolution-independent simulations of transport using powerful numerical tools (lattice Boltzmann and random walk particle tracking methods) and state-of-the-art supercomputing facilities. In this work we compare simulated transport coefficients (permeability and hydrodynamic dispersion/plate height) with the available experimental data, and perform detailed analysis of the pore-space geometry and velocity flow fields.

Simulation geometry

First packing considered in this study is he physical reconstruction of $10 \mu \mathrm{~m}$ i.d. he initial step, one stack of 450 images (individual image cut is shown below)

$\begin{array}{ll}\text { length was } 8192 \text { pixels }(246 \mu \mathrm{~m}) \text {. Thereafter four such image stacks were } & \begin{array}{l}\text { Figure 1. Left: cross section of a reconstructed image stack } \\ \text { after processing. Middle: example of a small sphere fit to }\end{array} \\ \text { collected and combined together using their overlapping regions in order }\end{array}$ collected and combined together using their overlapping regions in order to obtain one long 3D image of a capillary segment with the length of 28000 pixels ($840 \mu \mathrm{~m}$). the closely located set of pixels extracted from the images.
Right: wall pixels extracted from the image on the left with Right: wall pixels extracted from the image on the left with
the corresponding approximations using circle and ellipse.

Figure 2. Wall in each cross-sectional image of a real-life capiliary was approximated using ellipse with four parameters, two for its center $\left(x_{\text {enenes }} y_{\text {emex }}\right)$
and two for the semi axes (a, b). The reconstructed capillary exposed axial and lateral deviations from the perfect cylindrical geometry, and this figure
 the reconstructed domain. Middle (Right): leftmost and rightmost (bottommost and topmost) points of the ellipses collected over the whole
reconstructed domain. In the following geometrical analysis the spatial inhomogeneity of the confining wall was taken into consideration. 601 particles, has the length of 390 particles diameters, and its average porosity is 0.448 .

particle diameter, $\mu \mathrm{m}$
Figure 4. Probability density (distribution)
function of the reconstructed particle diamefunction of the reconstructed particle diame-
terc. The data were collected using a ample
of 9601 particle diameters. All the packings of 9601 particle diameters. All the packings
considered in this study use the same fixed se of patricles diameters. Relative standard de
viation of the distribution i is 15.7\%.

The second set of packings was generated in order to complement the original reconstructed packing. Using Jodrey-Tory algorithm, we generated two packings with different degree of heterogeneity (heterogeneous Rx0.001 and homogeneous Sx2). Both packings used the reconstructed set of particle diameters $\left(d_{p}\right)$, and were confined by circular (i.e., non-elliptical) wall. Inner diameter of the confining cylinder ($=5.65 d_{\mathrm{p}}$) was chosen to match the average porosity value of the reconstructed packing $(=0.448)$.
As demonstrated in Figure 1, approximation of the scanned geometry with spheres and ellipses slightly differs from the geometry of the original scanned images. To address the possible influence of the approximation with spheres and ellipses, we performed additional simulations using only the original bitmap images (one of which is shown on the left part of Figure 1). The simulations performed in this geometry are referred to as "scanned", while "reconst." denotes the packing formed by spheres and ellipses.

Figure 5. Top-left: a average porosity profiles
for the for the reconstructucted (reconst. and scanneed)
and generated ((Rx0.01 and Sxi) and generated (Rx0. 001 and Sx2) packings.
Right: front view (top) onto the packing, and Right: front view (top) onto the packing, and
the corresponding two-dimensional porosity profiles (bottom).

Simulation of hydrodynamic dispersion

Voronoi tessellation

ronoi tessellation is a powerful approach for analysis of the void space of particulate packings, and it is an alternative to the common analysis based on porosity profiles. The dea behind Voronoi tessellation is to determine a set of space points closer to the center of a given sphere than to any of its neighbours. Recently, we demonstrated a great potential of Voronoi tessellation in correlating pore-space geometry with dispersion for the packings of equal particles [5]. In the case of unequal particle diameters (see Figure 4) original Voronoi tessellation can be extended to the S-Voronoi tessellation where space points closer to the surface of a given sphere are now considered. In this study we apply S-Voronoi tessellation to the reconstructed and generated packings, and the results of the geometrical analysis are presented in Figure 9 .

Conclusion We performed high-resolution simulations persion in two reconstructed and two generated geometries. On reconstructed geometry was based on the direct imaging of the pore space of particulate capillary, while another resulted from an additional post-processing of the images (giving locations and diameters of particles as well as approximation of the capillary wall with a large set of ellipses). Two additional computer-generated packings were created with the basic geometrical properties (average porosity, inner diameter of the confining cylindrical container, particle size distribution) taken from the reconstructed packing.

Comparison of the permeability values revealed excellent agreement between experiment and simulation in the second reconstructed packing. Dispersion simulations resulted in surprisingly high difference between two reconstructed packings as well as between the second reconstructed and computer-generated ones. The observed difference can be explained by the reduced axial symmetry in two reconstructed packings (which is supported by Figures 7d, 8b, 9), and better resolved near-wall region of the second packing (Figure 5) amplifies this effect further. Much lower plate height values (Figure 8a) of the simulated packings demonstrate high potential of particulate packings on a way to increase the separation efficiency.

