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Abstract

This thesis is dedicated to the study of mass transport processes (flow, diffusion, and hydrodynamic
dispersion) in computer-generated random sphere packings. Periodic and confined packings of
hard impermeable spheres were generated using Jodrey–Tory and Monte Carlo procedure-based
algorithms, mass transport in the packing void space was simulated using the lattice Boltzmann
and random walk particle tracking methods. Simulation codes written in C programming lan-
guage using MPI library allowed an efficient use of the high-performance computing systems
(supercomputers).

The first part of this thesis investigates the influence of the cross-sectional geometry of the
confined random sphere packings on the hydrodynamic dispersion. Packings with different values of
porosity (interstitial void space fraction) generated in containers of circular, quadratic, rectangular,
trapezoidal, and irregular (reconstructed) geometries were studied, and resulting pre-asymptotic
and close-to-asymptotic hydrodynamic dispersion coefficients were analyzed. It was demonstrated
i) a significant impact of the cross-sectional geometry and porosity on the hydrodynamic dispersion
coefficients, and ii) reduction of the symmetry of the cross section results in longer times to reach
close-to-asymptotic values and larger absolute values of the hydrodynamic dispersion coefficients.
In case of reconstructed geometry, good agreement with experimental data was found.

In the second part of this thesis i) length scales of heterogeneity persistent in unconfined and
confined sphere packings were analyzed and correlated with a time behavior of the hydrodynamic
dispersion coefficients; close-to-asymptotic values of the dispersion coefficients (expressed in terms
of plate height) were successfully fitted to the generalized Giddings equation; ii) influence of the
packing microstructural disorder on the effective diffusion and hydrodynamic dispersion coeffi-
cients was investigated and clear qualitative corellation with geometrical descriptors (which are
based on Delaunay and Voronoi spatial tessellations) was demonstrated.



Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit Stofftransport durch Druckfluss, Diffusion und die
aus beiden Prozessen resultierende hydrodynamische Dispersion in computergenerierten Packun-
gen aus harten, undurchlässigen Kugeln, deren geometrische Anordnung in der Packung dem
Zufallsprinzip unterliegt. Solche Zufallskugelpackungen wurden sowohl mit dem Jodrey–Tory-
Algorithmus als auch mit einer Monte Carlo-basierten Methode generiert. Das dreidimensionale
Geschwindigkeitsfeld von Druckfluss in den Zwischenräumen einer Zufallskugelpackung wurde
mit der Gitter-Boltzmann-Methode berechnet; Diffusion und hydrodynamische Dispersion wurden
mithilfe eines Zufallsweg-Partikelverfolgungs-Verfahrens simuliert. Die Programm-Codes wurden
in der Programmiersprache C unter Benutzung der Messing Passage Interface-Bibliothek gezielt für
die effiziente Anwendung auf Hochleistungs-Rechensystemen (Supercomputer) geschrieben.

Im ersten Teil der Arbeit wird untersucht, wie die Querschnitts-Geometrie des Behälters die
hydrodynamische Dispersion in Zufallskugelpackungen beeinflusst. Dazu wurden Zufallskugel-
packungen verschiedener Packungsdichten in Behältern mit kreisfömigen, quadratischen, rechtecki-
gen, halbkreisförmigen, und trapezoidalen Querschnitten generiert, und die prä-asymptotischen
und quasi-asymptotischen hydrodynamischen Dispersionskoeffizienten berechnet und analysiert.
Außerdem wurden auch Zufallskugelpackungen in einem Behälter mit irregulärer Querschnitts-
geometrie untersucht. Dafür wurde nicht nur der Querschnitt eines echten, mit kugelförmigen Ad-
sorberpartikeln gefüllten Mikrochip-Kanals für die Trennung von Substanzen durch Hochleistungs-
Flüssigkeitschromatographie rekonstruiert, sondern auch die Größenverteilung der Adsorberparti-
kel als Vorlage für die Größenverteilung der Kugeln in der Zufallspackung verwendet. Im zweiten
Teil der Arbeit wurden die verschiedenen Längenskalen struktureller Inhomogeneitäten in Zu-
fallskugelpackungen mit und ohne Behälter analysiert, welche das Fluss-Geschwindigkeitsprofil
und damit die hydrodynamische Dispersion bestimmen. Außerdem wurde untersucht, wie sich
die Packungsmikrostruktur von Zufallskugelpackungen auf die effektiven Diffusionskoeffizienten
einerseits und die hydrodynamischen Dispersionskoeffizienten andererseits auswirkt.
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Introduction

Transport processes in porous media occur in many diverse fields of science and engineering, includ-
ing groundwater pollution, oil recovery, chromatographic separations, filtration, drug discovery and
peptide engineering, evolution of rocks, diffusion in biological tissues, and many others. Accurate
prediction and optimization of the transport processes requires understanding, both qualitative
and quantitative, of the underlying physical phenomena. Solution of the generic scalar transport
equation forms the basis for the quantitative description of the transport processes and provides an
insight into their origin. Complexity of the geometry of pores and of their topological connectivity
makes it infeasible to apply analytical methods for the solution of the generic scalar transport
equation. As a result, it is necessary to employ numerical methods to solve the transport equation,
or, in other words, to perform numerical simulations. Complex structure of the pore space requires
utilization of the advanced numerical techniques as well as exceptional computational resources to
perform pore-scale simulations of transport (such as flow, diffusion, and hydrodynamic dispersion)
in porous media.

In this thesis we deal exclusively with the random close sphere packings which are one of the
types of porous media. An exact description of the geometry and topology of sphere packings
can be done relatively easy using coordinates and diameters of spheres. In this work, transport
phenomena simulated in the pore space of sphere packings include i) advective motion caused
by the flow of an incompressible fluid, ii) mass transport due to random motion (diffusion), and
iii) transport due to combination of both advection and diffusion, resulting in the hydrodynamic
(eddy) dispersion. Flow of an incompressible fluid, diffusion, and hydrodynamic dispersion can
be described by the solution of the Navier–Stokes, diffusion, and advection–diffusion equations,
respectively. These three equations, in turn, can be derived from the generic transport equation.

A widely used way to approximate the solution of the aforementioned transport equations
is to employ classical Eulerian methods like finite difference, finite volume, or finite element. We
used alternative numerical methods to approach the solutions of Navier–Stokes, diffusion, and
advection–diffusion equations: the lattice Boltzmann1 (LBM) and random walk particle tracking2

(RWPT) methods, which do not solve the transport equations directly. The LBM operates with
fictitious particles (forming a system called “lattice gas”) which propagate on a discrete lattice at
discrete time steps. Under particular conditions such a system recovers the macroscopical behavior
of a fluid. In RWPT, solute is represented by the ensemble of infinitely small particles (tracers), and
time evolution of solute is simulated by the iterative displacement of each tracer in the volume of

1 S. Succi. The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, 2001.
2 J. A. Rudnick and G. D. Gaspari. Elements of the random walk: an introduction for advanced students and researchers.
Cambridge University Press, 2004.
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interest (which is the sphere packing void space here). Both methods have their advantages and
limitations, however they allowed us to find precise solutions to the transport problems of interest.
Further, LBM and RWPT are characterized by their local update rule, which makes them attractive
for the usage on high-performance computing systems (supercomputers). These systems contain
a large amount of processing units connected together with a network. Local update rule of both
methods results in the minimization of the information transfer among the processing units during
an execution of a parallel program, allowing to minimize communication time and to maximize
time dedicated to the calculations. Effective use of the supercomputing facilities allowed us to
perform large-scale simulations with largest production runs utilizing 100 000 CPU cores and 50 TB
of random access memory, making it possible to obtain simulation results which would become
available on desktop PCs only after at least 10–15 years due to both CPU speed and memory
limitations.3

Prediction of the transport properties of porous media is of particular interest in the field
of chromatography. Chromatography (or separation science) is used to separate mixtures of sub-
stances into their components. The idea behind chromatography is that a mixture of compounds
(sample, analyte) to be separated is transported with a carrier (fluid or gas) through a container
filled with porous material, and, due to different retention times of the compounds resulting
from the interaction with the stationary phase (i.e., with the porous material), compounds are
carried with different effective velocities, and, therefore, get separated. Porous material in chro-
matographic columns is often formed by spherical particles. In an ideal case, a concentration delta
pulse of a binary mixture injected at the column inlet would be separated into two delta pulses
while the mixture migrates the column downstream. However, different processes (such as dif-
fusion, non-uniformity of the flow field, sorption of the mixture species to the stationary phase)
spread concentration profiles around their mean, introducing overlap of the profiles and decreasing
quality of the separation or canceling the separation at all.

Advances in the development of microfluidic devices4 enabled integration of a variety of labo-
ratory functions, such as sample preparation, injection, detection, and chromatographic separation
into a single device of credit-card size operating with very small sample volumes (as low as pi-
coliters).5 Nowadays such devices are powerful tools for applications in life sciences and medical
diagnostics. While a typical separation column is a cylindrical tube of centimeter diameter6,7 filled
with porous material, separation channel in a microfluidic device (microchannel) has micrometer
dimensions and typically non-circular cross sections. Non-circular geometries of the microchannel
cross section are caused by the fabrication process (for example, photolithography) and materials
used,8 and have approximately semicircular,9 elliptical,10 rectangular,11 or trapezoidal12 cross sec-

3 D. G. Feitelson. Comput. Sci. Eng., 7: 42–47, 2005.
4 G. M. Whitesides. Nature, 442: 368–373, 2006.
5 H. Yin et al. Anal. Chem., 77: 527–533, 2005.
6 G. Guiochon et al. Fundamentals of preparative and nonlinear chromatography. 2nd ed. Elsevier, 2006.
7 J. W. Jorgenson. Annu. Rev. Anal. Chem., 3: 129–150, 2010.
8 S. Koster and E. Verpoorte. Lab Chip, 7: 1394–1412, 2007.
9 K. W. Ro, J. Liu, and D. R. Knapp. J. Chromatogr. A, 1111: 40–47, 2006.

10 D. S. Reichmuth, T. J. Shepodd, and B. J. Kirby. Anal. Chem., 77: 2997–3000, 2005.
11 J. Liu et al. Anal. Chem., 81: 2545–2554, 2009.
12 C.-Y. Shih et al. J. Chromatogr. A, 1111: 272–278, 2006.
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tions with deviations from the ideal geometries. Influence of the microchannel geometry on the
transport processes occurring within a channel was extensively studied for the open channels,13

whereas little attention was given to the transport in packed non-cylindrical microchannels.14 In
the first part of this thesis (Chapters 2 to 4) we analyze advective–diffusive mass transport in
the channels of various cross sections packed with spherical particles by the means of pore-scale
simulations. Simulation workflow includes i) computer generation of a random packing of solid,
impermeable spheres within a channel, ii) simulation of fluid flow in the channel void space with
LBM, and iii) simulation of advective–diffusive mass transport in the channel void space with
RWPT. Chapter 2 discusses mass transport in the channels with basic cross-sectional geometries
(circular, quadratic, rectangular, and semicircular). Trapezoidal geometries with varied base angle
and top-to-bottom base ratio are studied in Chapter 3. Finally, Chapter 4 deals with channels of
the irregular geometry reconstructed from a high-resolution SEM image of the real microchannel
cross section. Obtained results were published in the following publications:

• S. KHIREVICH, A. HÖLTZEL, D. HLUSHKOU, and U. TALLAREK. Impact of conduit geometry and bed
porosity on flow and dispersion in noncylindrical sphere packings. Analytical Chemistry, 79: 9340–
9349, 2007. DOI: 10.1021/ac071428k

• S. KHIREVICH, A. HÖLTZEL, D. HLUSHKOU, A. SEIDEL-MORGENSTERN, and U. TALLAREK. Structure–
transport analysis for particulate packings in trapezoidal microchip separation channels. Lab on a
Chip, 8: 1801–1808, 2008. DOI: 10.1039/b810688f

• S. KHIREVICH, A. HÖLTZEL, S. EHLERT, A. SEIDEL-MORGENSTERN, and U. TALLAREK. Large-scale
simulation of flow and transport in reconstructed HPLC-microchip packings. Analytical Chemistry, 81:
4937–4945, 2009. DOI: 10.1021/ac900631d

Part two of this thesis (Chapters 5 to 7) addresses fundamentals of the transport processes in
the random monodisperse sphere packings. Chapter 5 investigates length scales of heterogeneity
persisting in i) unconfined (periodic, bulk) sphere packings and ii) packings confined by the hard
wall of a circular cross section. Length scales of heterogeneity in bulk and confined packings are
analyzed and correlated with the time evolution of the hydrodynamic dispersion in both axial
and transverse (relative to the flow) directions. Chapter 6 is concerned with the hydrodynamic
dispersion in the bulk monodisperse sphere packings of different microstructural disorder. We
generated packings with different degree of microstructural disorder (which was varied by the
means of parameters of the generation algorithm) and performed analysis of the geometrical and
transport properties of the packings. Finally, Chapter 7 discusses the influence of microstructural
disorder on diffusion in the packing void space. Packings with different microstructural disorder
were generated using two different generation algorithms each having its own set of parameters.
The results presented in the second part of the thesis were published in the following publications:

• S. KHIREVICH, A. HÖLTZEL, A. SEIDEL-MORGENSTERN, and U. TALLAREK. Time and length scales of
eddy dispersion in chromatographic beds. Analytical Chemistry, 81: 7057–7066, 2009. DOI: 10.1021/
ac901187d

• S. KHIREVICH, A. DANEYKO, A. HÖLTZEL, A. SEIDEL-MORGENSTERN, and U. TALLAREK. Statistical
analysis of packed beds, the origin of short-range disorder, and its impact on eddy dispersion. Journal
of Chromatography A, 1217: 4713–4722, 2010. DOI: 10.1016/j.chroma.2010.05.019

13 H. A. Stone, A. D. Stroock, and A. Ajdari. Annu. Rev. Fluid Mech., 36: 381–411, 2004.
14 G. P. Rozing et al. J. Sep. Sci., 27: 1391–1401, 2004.

http://dx.doi.org/10.1021/ac071428k
http://dx.doi.org/10.1039/b810688f
http://dx.doi.org/10.1021/ac900631d
http://dx.doi.org/10.1021/ac901187d
http://dx.doi.org/10.1021/ac901187d
http://dx.doi.org/10.1016/j.chroma.2010.05.019




Chapter 1

Numerical methods

In this chapter we describe the algorithms and numerical methods used in this thesis to generate
random sphere packings and simulate transport processes. Simulation approach consists of the
following steps: i) generation of a random sphere packing, ii) discretization of the packing, iii) pore-
scale simulation of a flow in the packing void space, and iv) simulation of (advection– )diffusion
in the packing void space. Here we give a detailed description of the algorithms and numerical
methods, their validation, and some aspects of program realization.

1.1 Random packing generation
The performance of chromatographic columns strongly depends on the column internal micro-
structure. A straightforward way to explore and study internal three-dimensional microstructure of
packed columns is to use experimental imaging techniques such as X-ray tomography,15–17 NMR,18,19

or confocal laser microscopy.20 However, until now the aforementioned methods do not allow imag-
ing sufficiently large fragments of the channels packed with micrometer-sized particles with a
spatial resolution sufficient for detailed analysis of mass transport. Another approach to represent
the internal packing microstructure is numerical simulations of the real slurry packing process.21

However, this approach still remains a challenging task due to the high complexity of the under-
lying physical processes and the large amount of particles contained in typical chromatographic
columns.

Chromatographic columns are most frequently packed with particles of close-to-spherical
shape by a slurry packing process.6,22 Such a preparation process creates a structure similar to the
random close sphere packing. Therefore, a different way to approach the microstructure of packed
beds is computer generation of random sphere packings. By this approach simulation of the real
packing process is avoided and packings are generated using a set of specific rules in order to
match different target properties (such as porosity, coordination number, contact network, degree
of heterogeneity, etc.) of real packed beds. Nowadays, simulation performance of the algorithms

15 T. Aste, M. Saadatfar, and T. J. Senden. Phys. Rev. E, 71: 061302, 2005.
16 R. Mizutani et al. Micron, 41: 90–95, 2010.
17 M. Piller et al. Transp. Porous Media, 80: 57–78, 2009.
18 H. Freund et al. Ind. Eng. Chem. Res., 44: 6423–6434, 2005.
19 B. Manz, L. F. Gladden, and P. B. Warren. AIChE J., 45: 1845–1854, 1999.
20 D. Hlushkou, S. Bruns, and U. Tallarek. J. Chromatogr. A, 1217: 3674–3682, 2010.
21 J. P. C. Vissers et al. J. Chromatogr. A, 883: 11–25, 2000.

6 G. Guiochon et al. Fundamentals of preparative and nonlinear chromatography. 2nd ed. Elsevier, 2006.
22 L. A. Colón, T. D. Maloney, and A. M. Fermier. J. Chromatogr. A, 887: 43–53, 2000.
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based on this approach allows generation of sphere packings with spatial dimensions sufficiently
large for the simulation of transport processes and their correlation with the geometrical properties
of packed beds. The algorithm performance can be evaluated using the time complexity23 analysis.
Time complexity T of a packing generation algorithm can be understood as a time, taken to
generate a packing with given properties, which is a function of the number of spheres n contained
in the packing. The algorithm time complexity is often expressed using Big Oh notation23 which
characterizes an upper bound of the growth rate of a given function. According to this notation, the
only terms with the largest growth rate are kept while constants and terms with a smaller growth
rate of a functional expression are ignored, i.e. T (n) = 0.001n3 + 2n2 + 1, O(T (n)) = O(n3). From
the practical point of view, an algorithm with a computational complexity of O(n2) allowed us to
generate dense sphere packings with∼104 –105 spheres in a reasonable time period, while theO(n)-
algorithm enabled generation of significantly larger packings, containing ∼107 –108 spheres. In this
thesis no strict complexity analysis of referred algorithms is performed, and only rough estimates
are given based on the algorithm description and benchmarks presented by their authors.

Currently there are numerous packing algorithms available in the literature.24–32 For example,
Zinchenko29 proposed a packing algorithm with computational complexity of O(n2) for the gen-
eration of periodic monodisperse sphere packings. The idea of the algorithm is based on creating
an initial dilute packing which forms a contact network, and then performing a densification of
the packing by swelling the particles while maintaining the initial contact network as far as possi-
ble. The advantage of the algorithm is the perfect contact network between particles of the final
packing.

An algorithm presented in the work of He et al.30 randomly distributes particles in the con-
tainer of reduced size and then displaces each overlapping particle simultaneously from all the
neighbors overlapping it. A particle which neither overlaps nor contacts others is moved to its
closest neighbor. While iterating, the algorithm expands the container by a factor depending on the
current overlap rate. The algorithm is capable to create polydisperse sphere packings with periodic
boundary conditions. To analyze the generated packings, He et al.30 addressed such properties of
the packings as coordination number, randomness, homogeneity, and isotropy. Despite the authors
did not provide any algorithm benchmarks, one can assume a complexity of O(n) because nearest
neighbors search (i.e., location of particles overlapping a given one) can be realized using, for
instance, the neighbor list algorithm.33 However, a dense initial distribution of particle centers may
reduce the effectiveness of such an approach.

Mueller et al.32 presented an algorithm to produce monodisperse packings confined by a
hard cylindrical wall. Starting from the wall, Mueller’s algorithm sequentially places spheres in

23 S. S. Skiena. The algorithm design manual. 2nd ed. Springer-Verlag, 2008.
24 M. P. Allen and D. J. Tildesley. Computer simulation of liquids. Oxford University Press, 1989.
25 B. D. Lubachevsky and F. H. Stillinger. J. Stat. Phys., 60: 561–583, 1990.
26 B. D. Lubachevsky, F. H. Stillinger, and E. N. Pinson. J. Stat. Phys., 64: 501–524, 1991.
27 A. Donev, S. Torquato, and F. H. Stillinger. J. Comput. Phys., 202: 737–764, 2005.
28 G. T. Nolan and P. E. Kavanagh. Powder Technol., 72: 149–155, 1992.
29 A. Z. Zinchenko. J. Comput. Phys., 114: 298–307, 1994.
30 D. He, N. N. Ekere, and L. Cai. Phys. Rev. E, 60: 7098–7104, 1999.
31 C. S. O’Hern et al. Phys. Rev. Lett., 88: 075507, 2002.
32 G. E. Mueller. Powder Technol., 159: 105–110, 2005.
33 Z. Yao et al. Comput. Phys. Commun., 161: 27–35, 2004.



1.1 Random packing generation 7

cylindrical container towards the cylinder center. The original realization of the algorithm has a
computational complexity of O(n2). Generated packings were characterized by the analysis of the
average porosity and its local oscillations induced by the confining wall.

In this work two algorithms are employed: modified Jodrey–Tory34 algorithm and an algorithm
based on Monte Carlo procedure,24 which are described below.

We note that both real and artificial packings can be assumed, from the point of transport
processes, as sets of obstacles (spheres) with corresponding spatial coordinates and diameters
placed in a container of a given geometry. Hence, both artificial and real packings can be described
by the identical geometrical parameters depending only on the number of spheres, their spatial
arrangement, and geometry of the container. As of now (2010), the question of the influence of
such parameters on the transport properties of sphere packings still remains unanswered. In this
thesis an attempt is made to identify and correlate geometrical parameters, describing the packing,
with transport processes occurring within the packing void space.

1.1.1 Modified Jodrey–Tory algorithm
Most of the sphere packings studied in this work are simulated using a Jodrey–Tory procedure34

modified as described below. The bulk packings are generated with periodic boundary conditions
along all spatial dimensions; packings referred to as confined are created inside of a container
with hard walls along two dimensions and periodic boundary conditions along the third one. The
packing void fraction was within the range of 0.366–0.50 and the amount of spheres was varied
from 7 · 103 to 8 · 10.6 Packings with such an amount of particles were found to be large enough for
performing statistical analysis of the generated packings and hydrodynamic dispersion simulations
within the packing void space.

The Jodrey–Tory (JT) algorithm can be classified as a “collective rearrangement” approach.35

JT starts from a random distribution of n sphere centers in a simulation box of volume Vbox.
Obviously, sphere overlap is typical in the initial configuration if the sphere packing to be generated
is dense. The value of n is calculated from the targeted (final) packing porosity εfin, Vbox, and the
final sphere diameter dfin as

ε = 1− nd3
fin

6Vbox

. (1.1)

Each iteration of the algorithm includes i) search of two particle centers C1 and C2 with the
minimum pair-wise distance dmin, where dmin defines the maximal sphere diameter at which no
overlap occurs in the current packing configuration and, consequently, the corresponding packing
porosity

εmin = 1− nd3
min

6Vbox

, (1.2)

34 W. S. Jodrey and E. M. Tory. Phys. Rev. A, 32: 2347–2351, 1985.
35 A. Bezrukov, M. Bargieł, and D. Stoyan. Part. Part. Syst. Char., 19: 111–118, 2002.
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and ii) symmetrical spreading apart of these two particle centers along a line C1C2 up to a new
distance, dmax, according to the following equation:

dmax = dmin

(
1 + α log10

(
dfin

dmin

))
, (1.3)

where α is some constant. As dmin asymptotically approaches dfin, εmin approaches εfin. The algo-
rithm exits when the condition

|εmin − εfin| < 1.001 εfin (1.4)

is satisfied. One should mention that a particular choice of functional dependence dmax = f(dmin) is
optional assuming monotonically decreasing functions. However, the choice of function will affect
the minimal packing porosity, convergence possibility, and convergence rate. To generate confined
packings, the following boundary condition is used: if a sphere intersects a confining wall, such a
move is rejected.

Packing microstructures are commonly referred to as “more homogeneous” or “more hetero-
geneous.” For example, packings of disks (selected instead of spheres for better visualization) in
the left gray block of Figure 1.1 are more homogeneous than their counterparts in the right block
while all these packings have equal porosity. As will be shown later, the difference in microstruc-
tural disorder may and does lead to different transport properties of generated packings. Therefore
it is meaningful to address not only porosity variation of the packings, but also their degree of
heterogeneity (DoH). The JT algorithm offers a possibility to modify the DoH of packings to be
generated by variation of the initial distribution of particle centers and the functional dependence
dmax = f(dmin). The latter is varied by modification of the value of the constant α. The former is
done by using two types of initial distributions, “R” and “S.” Packings, where sphere centers are
distributed uniformly random, are referred to as R-packings. To generate S-packings, the simulation
box is initially divided into n equal cubic cells and each sphere center is then placed in a random
position into a cell. Both types of initial distributions result in a uniform random distribution of
sphere centers within the simulation box. The constant α in equation (1.3) defines the magnitude
of each displacement of centers C1 and C2. With a small value of α the sphere centers tend to stay
closer to their initial positions as far as possible during generation, and the final packing configu-
ration reflects the randomness of the initial distribution of particle centers. A larger displacement
value provides a more uniform distribution of sphere centers in the final configuration. In this
work packings generated with JT algorithm are denoted as “TxA,” where T is the type of initial
distribution of particle centers (R or S) and A is the value of α. In case of α = 1, the generated
packings are referred to as just “T.”

The influence of the initial distribution type and the value of parameter α on microstructural
disorder is demonstrated in Figure 1.1, where three-dimensional packings of spheres are replaced
with two-dimensional packings of disks for better clarity. The microstructure of the final packings
for the selected regions is compared with the respective initial disk distributions in Figure 1.1.
The generated packings indeed reflect what was intended by their respective packing protocols:
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Figure 1.1: Bulk random packings of 900 monosized hard disks at ε ≈ 0.46 generated with different parameters of
the JT algorithm. Shown are the initial distributions of the disks for S- and R-configurations (top) and the generated
two-dimensional packings ((Sx6, S), (R, Rx0.001); bottom). Circles around several regions help to compare the disk
arrangement in the initial distributions with that of the final packings.

i) S-packings are more homogeneous than R-packings, due to the initial, uniform distribution of the
disks, and ii) initial nonuniformities are best balanced in the Sx6 configuration and least balanced
in the Rx0.001 configuration, where the former denotes S-packings with α = 6 and the latter is
R-packings with α = 0.001.

The program realization of the JT algorithm is based on the work of Bargieł et al.36 The initial
step of the program i) creates a sorted list (SL) data structure,23 where distances between particle
centers (with corresponding particle indexes) are stored in ascending order; ii) partitions the space
occupied by the simulation box into cubic cells (CC) where each cell contains the indexes and
coordinates of all the particle centers enclosed by it. The main loop of the program contains the
following four steps:

1. remove the head of SL containing distance and indexes of the closest particle centers C1,2,
2. shift C1,2 apart according to equation (1.3),
3. recalculate distances between C1,2 and all their neighbors from 27 CCs (the CC containing

C1 (or C2) plus its 26 neighbors),
4. update SL using information on the recalculated distances from step 3.

Computational time complexity of such a program realization is a sum of complexities of the
corresponding steps: O(1) + O(1) + O(m) + O(n) = O(m + n) = O(n), where m is the maximal
amount of spheres which are currently located in 27 CCs and n is the number of particles in the

36 M. Bargieł and J. Mościński. Comput. Phys. Commun., 64: 183–192, 1991.
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packing. After the generation is complete, JT stores sphere diameters, multiplied by the current
value of dmin, and center coordinates.

Obviously, JT algorithm produces geometrically jammed, but mechanically unstable sphere
packings, because interparticle forces are not taken into account. On the other hand, JT has the
following advantages:

• packing porosity and degree of heterogeneity can be systematically varied via input parame-
ters of the algorithm εfin and α,

• generated packings are isotropic contrary to the packings generated with sedimentation-
based methods37 (however, absence of a packing-scale anisotropy should not be mixed with
particle-scale or local anisotropy38 which is an inherent property any random sphere packing),

• JT avoids partial packing crystallization,29

• JT allows to simulate polydisperse packings in confined geometries of an arbitrary cross
section,39

• the algorithm has computational time complexity of O(n),36 which enables generation of
confined packings containing millions of spheres at relatively low porosities (0.40) on one
CPU core.40

1.1.2 Monte Carlo procedure-based algorithm
The second packing method used in this thesis is based on the Monte Carlo procedure24 (MC). MC
starts packing generation from a uniform distribution of n spheres of diameter dp in a dilute cubic
array. This array is derived from the simple cubic packing via expansion by a factor f while keeping
particle diameters constant. In our simulations we use f = 2 resulting in 8 times higher volume of
initial packing domain compared to the packing where n spheres are arranged in a simple cubic
packing. After initialization of sphere positions, MC moves every sphere in a random direction
on a distance ∆d. If a given sphere intersects another one, the move is rejected. The distance ∆d

depends on the current fraction of accepted moves a: ∆d is decreased when a < 0.5 and vice
versa. After the series of N (= 5000 in this work) iterations is performed for the whole ensemble
of spheres, the minimal distance between particle centers dmin is calculated and the simulation box
is scaled by the factor dp/[dp + Ω · (dmin − dp)] while keeping the sphere diameter constant. Here
Ω is the compression rate, 0 < Ω ≤ 1. By compressing, the packing porosity decreases and MC
stops execution when the current porosity reaches the desired value εfin. Generated MC packings
are denoted as “ΩxC” where C is the magnitude of the compression rate Ω used in the packing
generation.

Monte Carlo procedure-based methods tend to create closely-packed (crystalline) regions
within a packing in case of slow compressing rates and lower packing densities.29 To demonstrate
these phenomena, we use two-dimensional packings of disks, as in the case of JT packings. Packings
generated at slower and faster compression rates (Ω = 0.025 and 0.99, respectively) are shown

37 E. M. Tory, N. A. Cochrane, and S. R. Waddell. Nature, 220: 1023–1024, 1968.
38 G. E. Schröder-Turk et al. EPL, 90: 34001, 2010.
39 S. Khirevich et al. Anal. Chem., 81: 4937–4945, 2009.
40 S. Khirevich et al. Anal. Chem., 81: 7057–7066, 2009.
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Figure 1.2: Bulk random packings of 900 monosized hard disks at ε ≈ 0.34 generated with different parameters of
MC algorithm. Disks marked in red form closely packed (crystalline) regions identified according to the value of ∆max,
which is indicated above the gray blocks. Lower values of the compression rate (Ωx0.025 packings) result in a larger
amount of crystalline regions and higher heterogeneity of generated packings due to a maldistribution of available void
space among packing.

in Figure 1.2. In order to identify densely packed disks, we employed Delaunay triangulation41

performed on the centers of disks. Closely packed disks (marked in red) form close-to-regular
triangles on the Delaunay mesh, and can be identified according to the criterion of maximal edge
length ∆max, i.e. disks forming triangles with a maximal edge length shorter than ∆max are assumed
as closely packed. Note that a packing with a larger fraction of densely packed particles can be
viewed as more disordered compared to the packing of the same porosity and a lower fraction of
dense regions.

Program realization of MC is based on the cell list data structure, as a part of the JT algorithm,
and therefore has a resulting in a computational complexity of O(n). While JT requires information
on the global minimal distance between sphere centers on each iteration, MC requires only local
information on the intersection of a given sphere (after its displacement) with its neighbors. This
enables an efficient parallel program realization of MC, for example, as in the work of Maier et al.42

1.2 Discretization
Computer simulation of macroscopic flow requires a discrete representation of the flow field and
the corresponding geometry in which flow is simulated; this requirement is due to the continuous
nature of a macroscopic flow field and limited amount of computer memory where information on
this field is stored. Therefore, to simulate flow in the packings generated during the previous step,
these packings must be discretized, i.e. a discrete spatial grid approximating the geometry of the
sphere packing must be introduced.

The particular choice of the grid type is usually determined by the geometrical properties of the
domain of interest and by the numerical method used for simulation of the flow field.43 In this thesis,

41 A. Okabe. Spatial tessellations: concepts and applications of Voronoi diagrams. 2nd ed. John Wiley & Sons, 2000.
42 R. S. Maier et al. Phys. Fluids, 15: 3795–3815, 2003.
43 P. Wesseling. Principles of computational fluid dynamics. Springer-Verlag, 2001.
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30 grid nodes

discretization

Figure 1.3: An example of a sphere and its counterpart discretized on a uniform cartesian grid (each small gray sphere
on the right represents one grid node). Space around the sphere is discretized too, but, for better visualization, the
figure shows only grid nodes belonging to the sphere. The discretization resolution of 30 grid nodes per sphere diameter
presented here is used in this thesis for the most simulations of flow and hydrodynamic dispersion. Finite size effects
are discussed in Subsections 1.3.5 and 1.4.6.

the simulation of fluid flow is done using the Lattice-Boltzmann method (see Subsection 1.3.3),
and a uniform Cartesian grid is used for the discretization of the generated packings.

To perform discretization, a parallel program was implemented. The program creates a three-
dimensional uniform cubic grid enclosing the generated packing. During execution, the program
sets each voxel of the grid to “solid” or “fluid” according to the spatial position of the voxel, inside
or outside the nearest sphere, respectively (Figure 1.3).

From the algorithmic point of view, there are two possibilities to examine the spatial position
(inside/outside the nearest particle) of each lattice voxel: “particle-based” (PB) and “voxel-based”
(VB). The PB approach includes the following steps: i) marking of all the voxels as “fluid,” ii) for
every sphere, identification of the lattice cube enclosing the sphere, and iii) iteration over all voxels
within the cube and marking voxels as “solid” if their centers are in the sphere with which the
lattice cube is associated. In the VB approach, iteration is done over all lattice voxels and for each
lattice voxel the distances between its center and the centers of the nearest spheres are calculated
(the list of nearest spheres is identified using the approach described in Subsection 1.1.1). While
the PB approach is faster since only voxels in vicinity of a given sphere are examined, the VB
provides a possibility to perform an approximation of Voronoi S-tessellation41,44–47 of the packing
void space (see Chapter 6). An important fact is that using the VB approach such a tessellation can
be done in confined packings of any cross section packed with arbitrary-shaped particles.

44 G. Voronoi. J. Reine Angew. Math., 133: 97–102, 1908.
45 G. Voronoi. J. Reine Angew. Math., 134: 198–287, 1908.
46 V. A. Luchnikov et al. Phys. Rev. E, 59: 7205–7212, 1999.
47 N. N. Medvedev et al. J. Comput. Chem., 27: 1676–1692, 2006.
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1.3 Fluid flow simulation
1.3.1 Navier–Stokes equation
From the macroscopic point of view, a fluid can be assumed as a continuous medium. Under this
assumption its behavior is described by the means of macroscopic quantities such as density ρ,
pressure p, and velocity ~v. Spatial and temporal evolution of the aforementioned quantities follows
the conservation laws of mass and momentum, and these quantities are interrelated via the Navier–
Stokes and continuity equations. These equations in the case of an incompressible fluid take the
following form48:

∂~v(~r, t)

∂t
+ (~v · ∇)~v = µ∆~v − 1

ρ
∇p+ ~F , (1.5)

∇ · ~v = 0, (1.6)

where µ denotes the kinematic viscosity and ~F is the body force. Numerical solution of equa-
tions (1.5) and (1.6) forms the basis of the majority of traditional computational fluid dynamics
(CFD) approaches nowadays.

Apart from the macroscopic representation, a fluid can be described using microscopic and
statistical approaches. The former is based on the representation of a fluid as a large number
of molecules which are in random motion and collide with each other. However, the number of
molecules in most real-life problems is too large to be handled by modern computers restricting the
usability of the microscopic approach. On the other hand, when only macroscopic variables (like
density, velocity, pressure) are of interest, a detailed description of each molecule is not necessary,
and the statistical approach provides a suitable alternative to the microscopic one.

1.3.2 Boltzmann equation
Consider a thermodynamic system consisting of N identical particles in three-dimensional space.
A point in 6N-dimensional phase space (Γ-space) describes the velocity and position of all parti-
cles in the system. Next, introduce a six-dimensional space (γ-space) where every point contains
velocity and coordinates of an individual particle. A point in Γ-space can be mapped onto N points
in γ-space; the former and the latter represent the state of the system, and time evolution of the
system is described by a trajectory in Γ-space or N trajectories in γ-space.

Let us introduce a γ-space distribution function f(~r, ~u, t) which is related to the number of
molecules dN(~r, ~u, t) with coordinates [~r, ~r + d~r] and velocities [~u, ~u+ d~u] as follows:

dN(~r, ~u, t) = f(~r, ~u, t)d~rd~u. (1.7)

Due to motion and interparticle collisions particles change their coordinates and velocities. After
time ∆t particles will have the coordinate ~r+~u∆t and velocity ~u+~a∆t (where ~a is the acceleration

48 L. D. Landau and E. M. Lifschitz. Fluid mechanics. 2nd ed. Butterworth–Heinemann, 2007.
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due to external forces). Hence, using equation (1.7), we can write:

(f(~r + ~u∆t, ~u+ ~a∆t, t+ ∆t)− f(~r, ~u, t)) d~rd~u =

(
∂f

∂t

)
c

d~rd~u∆t, (1.8)

where the term (∂f/∂t)c is the time change of the distribution function due to the interparticle
collisions. Let us expand the first term on the left hand side of equation (1.8) as a Taylor series to
the first order about the point (~r, ~u, t):

f(~r + ~u∆t, ~u+ ~a∆t, t+ ∆t) = f(~r, ~u, t) +

+ ∆t

(
~u · ∂f(~r, ~u, t)

∂~r
+ ~a · ∂f(~r, ~u, t)

∂~u
+
∂f(~r, ~u, t)

∂t

)
.

(1.9)

Combining equations (1.8) and (1.9), we get(
~u · ∂

∂~r
+ ~a · ∂

∂~u
+
∂

∂t

)
f(~r, ~u, t) =

(
∂f

∂t

)
c

. (1.10)

Equation (1.10) is known as the Boltzmann equation, and it describes the time evolution of the
one-particle distribution function in γ-space. However, equation (1.10) is of little practical use
until the collision term (∂f/∂t)c is explicitly specified. Let us make the following assumptions49:

• only binary particle collisions do occur;
• the velocity of a particle does not correlate with its position (assumption of molecular chaos);
• external forces have no influence on particle collisions;
• wall effects are ignored.

Under these assumptions, Boltzmann expressed the collision term of equation (1.10):(
∂f

∂t

)
c

=

∫
|~u− ~u1|σ(Ω) (f ′f ′1 − ff1) dΩd3~u1. (1.11)

Here Ω denotes the scattering angle of the binary collision ~u~u1 → ~u′~u′1 with the differential
cross section σ, f and f ′ are the one-particle distribution functions before and after the collision,
respectively. Such a representation of the collision term results in the complex integro-differential
form of equation (1.10). The collision term can be significantly simplified assuming a system state
close to thermal equilibrium. In such a state, a classical ideal gas has a uniform distribution of
density ρ and average (macroscopic) velocity ~v of its particles, and the one-particle distribution
function follows the Maxwell–Boltzmann distribution:

f eq(~r, ~u) =
ρ

(2πkBT )
3/2

exp

[
−(~u− ~v)2

2kBT

]
, (1.12)

where ρ, ~v, kB, and T are the macroscopic density, macroscopic velocity, Boltzmann constant, and
temperature, respectively. According to the Boltzmann H-theorem,49 the entropy of an ideal gas never

49 K. Huang. Statistical mechanics. 2nd ed. John Wiley & Sons, 1987.
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decreases. So, we can expect an arbitrary one-particle distribution function to evolve according to
the Boltzmann equation and relax to the Maxwell–Boltzmann distribution. This leads to the more
simple definition of the collision term50:(

∂f

∂t

)
c

= −f − f
eq

τ
. (1.13)

Here τ is the relaxation time and such a form of the collision term is known as the BGK collision
operator. Using (1.13), the Boltzmann equation (1.10) can be rewritten as follows:(

~u · ∂
∂~r

+ ~a · ∂
∂~u

+
∂

∂t

)
f(~r, ~u, t) = −f − f

eq

τ
. (1.14)

It should be noted that the connection between Boltzmann BGK equation (1.14) and macroscopic
equations (1.5) and (1.6) can be demonstrated using the Chapman–Enskog expansion of equa-
tion (1.14) in the low Knudsen number limit.51 Macroscopic quantities such as density, velocity,
and temperature can be determined from statistical moments of a given distribution function f :

ρ(~r, t) =

∫ ∞
−∞

f(~r, ~u, t)d~u, (1.15a)

~v(~r, t) =
1

ρ(~r, t)

∫ ∞
−∞

~uf(~r, ~u, t)d~u, (1.15b)

T (~r, t) =
1

3kBρ(~r, t)

∫ ∞
−∞

(~u− ~v)2f(~r, ~u, t)d~u. (1.15c)

1.3.3 Lattice Boltzmann equation
The simulation of flow in this thesis is done using the lattice Boltzmann method (LBM).1,52,53 Histor-
ically, the method was developed as an improvement of Lattice Gas Automata (LGA),54–58 which in
turn originates from Cellular Automata (CA) models.59 At present time, LBM is probably the best
method for simulation of microflows in porous media.1

The LBM is based on the solution of the lattice Boltzmann equation, which is a special dis-
cretized form of the Boltzmann equation.60 The connection between both equations is briefly
described below.

50 P. L. Bhatnagar, E. P. Gross, and M. Krook. Phys. Rev., 94: 511–525, 1954.
51 S. Chapman and T. G. Cowling. The mathematical theory of non-uniform gases. 3rd ed. Cambridge University Press,

1990.
1 S. Succi. The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, 2001.

52 S. Chen et al. J. Stat. Phys., 68: 379–400, 1992.
53 S. Chen and G. D. Doolen. Annu. Rev. Fluid Mech., 30: 329–364, 1998.
54 G. R. McNamara and G. Zanetti. Phys. Rev. Lett., 61: 2332–2335, 1988.
55 J. Hardy, Y. Pomeau, and O. de Pazzis. J. Math. Phys., 14: 1746–1759, 1973.
56 J. Hardy, O. de Pazzis, and Y. Pomeau. Phys. Rev. A, 13: 1949–1961, 1976.
57 U. Frisch, B. Hasslacher, and Y. Pomeau. Phys. Rev. Lett., 56: 1505–1508, 1986.
58 U. Frisch et al. Complex Syst., 1: 649–707, 1987.
59 S. Wolfram. J. Stat. Phys., 45: 471–526, 1986.
60 X. He and L.-S. Luo. Phys. Rev. E, 56: 6811–6817, 1997.
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A simplified form (without the body force term) of the BGK Boltzmann equation (1.14) can
be first order approximated as follows60,61:

f(~x+ ~u∆t, ~u, t+ ∆t) = f(~x, ~u, t)− ∆t

τ
(f(~x, ~u, t)− f eq(~x, ~u)) , (1.16)

where ∆t is the time step. As the next step, let us approximate the equilibrium distribution function
f eq assuming values of the average velocity ~v are small compared to the speed of sound in the
system (low Mach number limit). Then the equilibrium function can be approximated up to the
second order:

f eq(~r, ~u) =
ρ

(2πkBT )
3/2

exp

(
− ~u2

2kBT

){
1 +

~u · ~v
kBT

+
(~u · ~v)2

2(kBT )2
− ~v · ~v

2kBT

}
. (1.17)

In this form, the equilibrium function can be used to evaluate macroscopic quantities (1.15). After
substitution of equation (1.17) into equations (1.15) and approximating the resulting integrals by
Gaussian quadratures, we get∫ ∞

−∞
P(~u)f(~r, ~u, t)d~u ≈

∑
α

P(~uα)Wαf(~r, ~uα, t). (1.18)

Here P(. . .) is the polynomial of its argument, Wα are weight coefficients, and ~uα is the discrete
velocity set. Using equation (1.18), macroscopic quantities and equilibrium function are defined
similar to (1.15) and (1.17),60 respectively:

ρ(~r, t) =
∑
α

Wαf(~r, ~uα, t), (1.19a)

~v(~r, t) =
1

ρ(~r, t)

∑
α

~uαWαf(~r, ~uα, t), (1.19b)

T (~r, t) =
1

3kBρ(~r, t)

∑
α

(~uα − ~v)2Wαf(~r, ~uα, t), (1.19c)

and

f eq
α (~r, ~uα) = Wα

ρ

(2πkBT )
3/2

exp

(
− ~u2

α

2kBT

){
1 +

~uα · ~v
kBT

+
(~uα · ~v)2

2(kBT )2
− ~v · ~v

2kBT

}
. (1.20)

Finally, the lattice Boltzmann equation takes the following form:

fα(~x+ ~eα∆t, t+ ∆t) = fα(~x, t)− ∆t

τ
(fα(~x, t)− f eq

α (~x, t)) , (1.21)

where fα(~x, t) = Wαf(~x, ~uα, t), ~eα = ~uαc = ~uα
√

3kBT with c = ∆x/∆t (= 1 in this thesis; ∆x is
the space step).

The exact choice of the discrete velocity set ~uα (or LBM lattice model) must satisfy the re-

61 T. Abe. J. Comput. Phys., 131: 241–246, 1997.
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Figure 1.4: Lattice node (large gray sphere) with links to its 6 orthogonal (red spheres) and 12 diagonal (yellow
spheres) neighbors in D3Q19 model.

strictions62,63 of i) symmetry required by the Navier–Stokes equations, ii) exact calculation of
macroscopic quantities (1.19), and iii) existence of a local equilibrium and its dependence only
upon conserved quantities. LBM lattice models are intensively discussed in the literature,64–70 and
to date there have been proposed several two- and three-dimensional LBM models: D2Q7, D2Q9,
D3Q13, D3Q15, D3Q19, D3Q27, and others. The lattice models are usually referred to as “DxQy,”
where x is the lattice dimensionality and y is the amount of lattice links (discrete velocities uα) of
a given lattice node to its neighbors (located on a simple cubic lattice).62 In this study, the D3Q19
lattice model was employed, which is a popular three-dimensional BGK LBM model nowadays. The
set of discrete velocities uα in the D3Q19 model is shown in Figure 1.4 and defined as

uα =


(0, 0, 0)c, α = 0;

(±1, 0, 0)c, (0,±1, 0)c, (0, 0,±1)c, α = 1, 2, . . . , 6;

(±1,±1, 0)c, (±1, 0,±1)c, (0,±1,±1)c, α = 7, 8, . . . , 18.

(1.22)

Corresponding weight coefficients wα (equation (1.18)) take the following form:

wα = Wα

1

(2πkBT )
3/2

exp

(
− ~u2

α

2kBT

)
=


1/3, α = 0;

1/18, α = 1, 2, . . . , 6;

1/36, α = 7, 8, . . . , 18.

(1.23)

62 Y. H. Qian, D. d’Humières, and P. Lallemand. EPL, 17: 479–484, 1992.
63 X. B. Nie, X. Shan, and H. Chen. EPL, 81: 34005, 2008.
64 X. W. Shan and X. He. Phys. Rev. Lett., 80: 65–68, 1998.
65 S. Ansumali, I. V. Karlin, and H. C. Öttinger. EPL, 63: 798–804, 2003.
66 W.-A. Yong and L.-S. Luo. J. Stat. Phys., 121: 91–103, 2005.
67 X. Shan, X.-F. Yuan, and H. Chen. J. Fluid Mech., 550: 413–441, 2006.
68 S. Ansumali et al. Phys. Rev. Lett., 98: 124502, 2007.
69 S. S. Chikatamarla and I. V. Karlin. Phys. Rev. E, 79: 046701, 2009.
70 X. Shan. Phys. Rev. E, 81: 036702, 2010.
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Taking into account that c =
√

3kBT , equation (1.17) can be rewritten as

f eq
α (~r, ~uα) = wαρ

{
1 +

3~uα · ~v
c2

+
9(~uα · ~v)2

2c4
− 3~v · ~v

2c2

}
. (1.24)

Equation (1.21) together with (1.24) provides a basis for the iterative calculation of an unknown
distribution function fα(~x, t). The kinematic viscosity in LBM is given by

ν =

(
τ − 1

2

)
c2

s∆t, (1.25)

where cs = c/
√

3 is the speed of sound in the system. This choice of viscosity makes the discretiza-
tion scheme (1.21) second order accurate both in space and time.71

1.3.4 Boundary conditions and pressure-driven flow
Apart from the calculating distribution function in the bulk region (i.e., away from the solid–liquid
interface), simulation of pressure-driven flow in the system with obstacles requires specification of
appropriate boundary conditions and a force driving the flow.

To implement the no-flux boundary conditions at the solid–liquid interface, we use the stan-
dard bounce-back boundary scheme (SBB): particles which meet the interface change their velocity
to the opposite direction. SBB is widely used18,42,72–76 due to the simplicity of its program realiza-
tion and high computational efficiency. But at the same time SBB is often criticized.77–82 The main
arguments against SBB used in combination with BGK LBM are the following:

• In the general case, SBB is first order accurate in space,83 and therefore degrades the second
order accuracy of LBM,

• SBB locates the boundary somewhere between solid and adjacent fluid nodes,81,83

• SBB in combination with the BGK collision operator results in a viscosity dependent position
of the boundary.84

In their study, Pan et al.81 performed simulations of flow through random sphere packings using
SBB with D3Q19 BGK LBM and demonstrated a significant error in the simulated permeability
arising in the case of deviation of the lattice viscosity ν from 1/6 (when relaxation parameter τ

71 M. B. Reider and J. D. Sterling. Comput. Fluids, 24: 459–467, 1995.
72 A. Koponen et al. Phys. Rev. Lett., 80: 716–719, 1998.
73 A. W. J. Heijs and C. P. Lowe. Phys. Rev. E, 51: 4346–4352, 1995.
74 C. Sun and L. L. Munn. Comput. Math. Appl., 55: 1594–1600, 2008.
75 M. A. van der Hoef, R. Beetstra, and J. A. M. Kuipers. J. Fluid Mech., 528: 233–254, 2005.
76 R. C. Acharya et al. Water Resour. Res., 43: W10435, 2007.
77 D. R. Noble et al. Phys. Fluids, 7: 203–209, 1995.
78 A. M. Artoli, A. G. Hoekstra, and P. M. A. Sloot. Int. J. Mod. Phys. C, 14: 835–845, 2003.
79 J. Boyd et al. Australas. Phys. Eng. Sci. Med., 27: 207–212, 2004.
80 S. Geller et al. Comput. Fluids, 35: 888–897, 2006.
81 C. Pan, L.-S. Luo, and C. T. Miller. Comput. Fluids, 35: 898–909, 2006.
82 A. Kuzmin. Multiphase simulations with lattice Boltzmann scheme. PhD thesis. Canada, University of Calgary, 2009.
83 I. Ginzbourg and P. M. Adler. J. Phys. II, 4: 191–214, 1994.
84 X. He et al. J. Stat. Phys., 87: 115–136, 1997.
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becomes less or greater than unity, see equation (1.25)). At the same time, SBB-based scheme with
ν = 1/6 performed well when the permeability was assumed as a measure of the method’s accuracy.
Using ν = 1/6 (or τ = 1), Maier and Bernard85 found different convergence rates of numerical
error (of D3Q19 BGK scheme implemented with different boundary conditions including SBB) for a
number of geometrical configurations they studied: flow past a sphere, flow past a sphere near wall,
and flow through ordered and disordered sphere packings. The authors observed a convergence
rate of the SBB-based model between first and second order, depending on the value of interest
(permeability, drag force, local velocities) and the configuration type. To conclude, the behavior
of numerical error in the simulations of fluid flow using SBB technique as a boundary condition is
not the same for different lattice models86 and geometry types, and, therefore, SBB should be used
with caution.

The sphere packings studied in this work have periodic boundary conditions along the principal
flow direction that, in turn, enables the use of a body force instead of pressure boundaries.87 Using
the approach employed in the studies of He et al.84 and Ginzbourg and Adler,83 the body force ~F

was added to the system by modification of equation (1.21) in the following way:

fα(~x+ ~eα∆t, t+ ∆t) = fα(~x, t)− ∆t

τ
(fα(~x, t)− f eq

α (~x, t)) + gα~eα · ~F , (1.26)

where the coefficients gα are defined as84,88

gα =


0, α = 0;

1/6, α = 1, 2, . . . , 6;

1/12, α = 7, 8, . . . , 18.

(1.27)

1.3.5 Model validation
Here we present a validation of the flow simulation approach described in Subsections 1.3.2–1.3.4
and Section 1.5. Namely, we examine our implementation of the lattice Boltzmann method by
i) comparison of the simulated results with an analytical solution available for a simple system
like flow between two infinite parallel plates, ii) a study of the influence of grid resolution on the
permeability of sphere packings, and iii) comparison of the simulated permeability with analytical
predictions, empirical correlations, and literature data.

Flow in open channel
A first set of simulations was performed in a simple system, namely, Stokes flow in a channel
formed by two infinite parallel plates, which is often referred to as “Poiseuille flow.” This system
has an analytical solution for the flow profile (having parabolic shape, with zero values at the
channel walls and a maximum in the channel center) and corresponding mean flow velocity,

85 R. S. Maier and R. S. Bernard. J. Comput. Phys., 229: 233–255, 2010.
86 D. Kandhai et al. J. Comput. Phys., 150: 482–501, 1999.
87 P. M. Adler, M. Zuzovsky, and H. Brenner. Int. J. Multiphase Flow, 11: 387–417, 1985.
88 J. M. Buick and C. A. Greated. Phys. Rev. E, 61: 5307–5320, 2000.
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thereby allowing a straightforward comparison of simulated values with analytical ones. For this
system, LBM demonstrated an excellent agreement between simulated and analytical solutions,
namely, the correct reproduction of the parabolic flow profile (data not shown) and the relative
error of the mean flow velocity of 0.5% at a spatial resolution of 25 grid nodes per channel height.

In the next step, we simulated flow through closely packed arrays of spheres. We generated
three types of sphere packings, each having the following varied properties: porosity, degree of
heterogeneity (DoH), and confinement type. The values of packing properties were chosen to
reflect the corresponding border values of the packings used in the simulations within this thesis.

Flow through ordered and disordered sphere packings
Packings of the first type are periodic cells formed by the body-centered cubic (BCC) structure. We
studied three BCC packings with porosities of ∼0.32 (touching spheres), 0.366, and 0.46 (both are
expanded BCC). Packings of the second type are periodic (“bulk”) random-close packings with
porosities of 0.366 and 0.46 and dimension of 10×10×75 d3

p, where dp is a sphere diameter. Packings
of the third type are generated in containers of rectangular and circular cross sections in order
to analyze packings with a smooth container wall and a wall with corners. Compared to the bulk
packings, the porosity of the confined packings typically has larger values due to the restrictions
of sphere positions induced by the confining wall. Hence, we simulated confined packings with
porosities of 0.42 and 0.48. Lateral dimensions of these packings were chosen as 10 dp for circular
(diameter) and 8.86 dp for square (edge length) cross-sections. Such lateral dimensions result in
a significant influence of the confining wall on the spatial distribution of the packing void space
fraction (see Chapter 2). Packings of the second and third type were generated at two values
of DoH, Rx0.001 and Sx2, which results in homogenous and heterogenous microstructure of the
packings (see Subsection 1.1.1 and Chapter 6).

Darcy’s law and permeability
The average flow velocity of an incompressible Newtonian fluid flowing through porous material
can be described using Darcy’s law89,90:

uav =
εκ∗∆p

ν
, (1.28)

which relates the average fluid velocity uav with the pressure gradient ∆p applied to the system,
fluid viscosity ν, and porosity of the material ε. The proportionality constant κ∗ is known as
permeability and characterizes the ability of the material to transport a fluid. Hereafter we will
operate with the dimensionless permeability, i.e. κ = κ∗/d2

p, where dp is the sphere diameter.

Influence of grid resolution on permeability
In the next validation step, we studied the influence of grid resolution on the permeability of
the generated packings. Grid resolution was varied from relatively coarse n = 10 (where n is
the number of grid nodes per sphere diameter) up to relatively fine n = 90. One should note

89 J. Bear. Dynamics of fluids in porous media. Dover Publications, 1988.
90 F. A. L. Dullien. Porous media: fluid transport and pore structure. 2nd ed. Academic Press, 1992.
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Figure 1.5: Dependence of the relative permeability error on the grid resolution: a) BCC and bulk packings, b) confined
packings. Red dashed line indicates the grid resolution of 30 nodes per sphere diameter dp, used in most simulations in
this thesis.

that memory requirements grow as O(n3) and computational time as O(n5). Figure 1.5 shows
the relative error in permeability, calculated in reference to the finest employed resolution of
n = 90 lattice nodes per sphere diameter dp. Packings of all three sets (BCC, bulk, and confined)
demonstrate similar behavior in the convergence rate of the permeability error, independently
of the order type (ordered, weakly and strongly disordered) and boundaries type (periodic or
confined) as seen in Figure 1.5. The average porosity of the packings plays an important role, and
the most dilute packings demonstrate significantly lower permeability error compared to the dense
packings at a given grid resolution.

Simulations reveal a slope of the convergence lower than −2 while the employed method
is of second order accuracy. This can be attributed to the large permeability error at lower grid
resolutions,85 which is caused by a higher “real” porosity of the packings, because, as mentioned,
SBB locates the boundary between solid and adjacent fluid nodes (see Subsection 1.3.4). Similar
convergence rate and magnitude of the permeability error was observed in the studies of Pan et al.81

and Chun and Ladd,91 although they used more advanced versions of LBM (multiple-relaxation-time
MRT instead of single-relaxation-time BGK).

Permeability of BCC packing at high grid resolution
After the study of the grid convergence of permeability, permeability values calculated at high
grid resolutions were compared with analytical predictions and empirical correlations. Simulated
permeability of the densest BCC packing (ε ≈ 0.32, κn=90 = 4.92 · 10−4; see Table 1.1) is lower in
comparison with analytical results of Zick and Homsy92 (κ = 5.01 · 10−4 ± 9.2 · 10−7) and Sangani
and Acrivos93 (κ = 5.01 · 10−4) by 2%. A similar underestimation of the permeability of BCC
packings was also observed in the simulations of Maier and Bernard85 and Llewellin,94 and can be

91 B. Chun and A. J. C. Ladd. Phys. Rev. E, 75: 066705, 2007.
92 A. A. Zick and G. M. Homsy. J. Fluid Mech., 115: 13–26, 1982.
93 A. S. Sangani and A. Acrivos. Int. J. Multiphase Flow, 8: 343–360, 1982.
94 E. W. Llewellin. Comput. Geosci., 36: 123–132, 2010.
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attributed to the viscosity dependent permeability values obtained with the BGK/SBB model. One
should note that such a behavior of the permeability is specific for the ordered structures95 like
BCC, FCC (face-centered cubic), and SC (simple cubic), and was not confirmed for the random
sphere packings.85

Permeability of bulk random packings at high grid resolution
A detailed analysis of the permeability of the bulk random packings was performed using the
set of packings generated with Jodrey–Tory (JT) and Monte Carlo (MC) algorithms (see Sub-
sections 1.1.1 and 1.1.2). The set contained packings of six types and six porosity values (see
Table 1.1); for each value of porosity and packing type we generated 10 random packing real-
izations. Packings of different types resulting from a variation of the parameters of JT and MC
algorithms have different microstructure. A detailed analysis of the packing microstructure is given
in Chapters 6 and 7, and further in this section only the permeability of the generated packings
is discussed. Flow simulations were done in the packings discretized with a spatial resolution of
n = 60 grid nodes per sphere diameter.

A widely used73,75,95–101 way to estimate the permeability of dense (ε < 0.50) packings of
spherical particles is to employ the Carman–Kozeny correlation,89,90 originating from the model
representation of the three-dimensional porous media as a bundle of capillary tubes:

κ =
1

kCK

ε3

(1− ε)2
, (1.29)

where kCK is known as Carman–Kozeny constant. In case of sphere packings, the constant kCK

depends on one-dimensional tortuosity of the capillary model, and the value of kCK = 180 is widely
used and assumed to be in a good agreement with experimental data on sphere packings.89,90 Fig-
ure 1.6 shows permeability values of the bulk sphere packings simulated at high spatial resolution
(n = 60) normalized by the permeability value calculated using equation (1.29) with kCK = 180.
Each point in Figure 1.6 is calculated as an average value of 10 random realizations of each packing
with fixed porosity and parameters of the generation algorithm.

As shown in Figure 1.6, both porosity and packing microstructure variation result in different
values of the permeability. The important fact is that the trend in the porosity–permeability values
of each packing type presented in Figure 1.6 is also reflected by i) independent estimates of the
effective diffusion values characterizing tortuosity of the flow paths in a packing, and ii) geometrical
analysis of the packing void space (see Chapter 7). Figure 1.6 demonstrates from one side, good
agreement of the simulation results and equation (1.29) with kCK = 180, and from other side,
the inability of equation (1.29) to provide an exact quantitative result. One should mention that

95 R. S. Maier et al. J. Colloid Interface Sci., 217: 341–347, 1999.
96 C. Pan, M. Hilpert, and C. T. Miller. Phys. Rev. E, 64: 066702, 2001.
97 D. Vidal et al. Comput. Chem. Eng., 33: 256–266, 2009.
98 A. P. Philipse and C. Pathmamanoharan. J. Colloid Interface Sci., 159: 96–107, 1993.
99 D. Coelho, J.-F. Thovert, and P. M. Adler. Phys. Rev. E, 55: 1959–1978, 1997.

100 R. P. Dias et al. J. Hydrol., 349: 470–474, 2008.
101 P. B. Warren and F. Stepanek. Phys. Rev. Lett., 100: 084501, 2008.
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95% confidence intervals calculated using permeability of 10 random realizations of each packing with a fixed porosity
and degree of heterogeneity.

a variety of porosity–permeability correlations are available in the literature,75,89,90 but, to our
knowledge, none of them takes into account an influence of the microstructural disorder, and,
therefore, cannot be used to predict the data presented in Figure 1.6.

Permeability of confined random packings at high grid resolution
As the last validation step, permeability of the confined packings simulated at the resolution of n =

90 was analyzed (see Table 1.1). An introduction of a hard confining wall resulted in the decreasing
permeability values, or, alternatively, in increasing values of the kCK constant calculated using
equation (1.29). Lower permeability of the confined packings was observed experimentally102–105

and confirmed theoretically106,107 for packings with a short lateral characteristic dimension (Lch ≈
10–20 dp, where Lch, for example, is the diameter of a packing of circular cross section), like
those studied here. A simple explanation is that a confining wall results in the porosity and,
respectively, flow velocity maldistribution in the vicinity of the wall (see Figures 2.2 and 2.4).
Hence, confined packings can be assumed as a parallel combination of unequal resistances, and the
resulting permeability of such a system will be smaller than that of a system with equal resistances,
i.e., an unconfined packing. We note that this simple explanation cannot be applied to the pore-level
maldistribution of void space: for example, uniform pores of a BCC crystal packing at an average
porosity of ε = 0.46 result in significantly lower permeability than pores of random packings of
equal porosity (see, for example, permeability values of BCC and random packings at ε = 0.46 in
Table 1.1).

102 R. Di Felice and L. G. Gibilaro. Chem. Eng. Sci., 59: 3037–3040, 2004.
103 S. Jung et al. J. Chromatogr. A, 1216: 264–273, 2009.
104 B. Eisfeld and K. Schnitzlein. Chem. Eng. Sci., 56: 4321–4329, 2001.
105 P. Mishra, D. Singh, and I. M. Mishra. Chem. Eng. Sci., 30: 397–405, 1975.
106 Y. Cohen and A. B. Metzner. AIChE J., 27: 705–715, 1981.
107 M. Winterberg and E. Tsotsas. AIChE J., 46: 1084–1088, 2000.
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Table 1.1: Characteristic data and permeability of the simulated sphere packings.

packing ε confinement n microstructural κ kCK

set type disorder
BCC 0.3198 periodic 90 crystal 4.92 · 10−4 143.7

0.366 6.57 · 10−4 185.6
0.46 1.21 · 10−3 275.4

bulk 0.366 periodic 60 Rx0.001 6.96 · 10−4 175.2
R 6.97 · 10−4 175.0
S 6.99 · 10−4 174.6

Ωx0.05 6.54 · 10−4 186.4
Ωx0.95 6.78 · 10−4 179.9

bulk 0.38 periodic 60 Rx0.001 8.19 · 10−4 174.4
R 8.21 · 10−4 173.9
S 8.19 · 10−4 174.2

Sx2 8.25 · 10−4 173.1
Ωx0.05 7.51 · 10−4 190.0
Ωx0.95 7.84 · 10−4 182.1

bulk 0.40 periodic 60 Rx0.001 1.03 · 10−3 172.9
R 1.03 · 10−3 173.1
S 1.03 · 10−3 173.3

Sx2 1.03 · 10−3 172.7
Ωx0.05 9.53 · 10−4 186.5
Ωx0.95 9.67 · 10−4 183.8

bulk 0.42 periodic 60 Rx0.001 1.29 · 10−3 171.1
R 1.28 · 10−3 171.8
S 1.28 · 10−3 171.7

Sx2 1.27 · 10−3 173.4
Ωx0.05 1.18 · 10−3 186.7
Ωx0.95 1.19 · 10−3 184.8

bulk 0.44 periodic 60 Rx0.001 1.61 · 10−3 169.1
R 1.59 · 10−3 170.4
S 1.59 · 10−3 171.3

Sx2 1.55 · 10−3 175.2
Ωx0.05 1.46 · 10−3 186.1
Ωx0.95 1.47 · 10−3 185.3

bulk 0.46 periodic 60 Rx0.001 2.00 · 10−3 166.9
R 1.98 · 10−3 169.0
S 1.96 · 10−3 170.4

Sx2 1.90 · 10−3 175.9
Ωx0.05 1.80 · 10−3 185.7
Ωx0.95 1.80 · 10−3 185.8

confined 0.42 circular 90 Rx0.001 1.11 · 10−3 199.2
Sx2 1.10 · 10−3 199.7

confined 0.48 circular 90 Rx0.001 2.19 · 10−3 186.9
Sx2 1.98 · 10−3 206.6

confined 0.42 square 90 Rx0.001 1.11 · 10−3 199.1
0.48 Rx0.001 2.21 · 10−3 184.8
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The employed model demonstrates close-to-monotonous convergence in the permeability to-
wards grid-independent values obtained at high spatial resolution, which, in turn, agree well with
the predictions available in the literature. Grid resolution of n = 30 (in Chapters 2–5) results
in a maximum permeability error of 3.8%, which is a reasonable trade-off between accuracy and
requirements in computational time and computer memory. One should note that permeability is
an average value and its grid convergence doesn’t provide an exact information on the convergence
of the pore-scale details of the flow field. The value of most interest in this thesis, the hydrody-
namic dispersion coefficient, is assumed to be more sensitive to the microstructural heterogeneities
and corresponding pore-scale flow details than the permeability. The results of the study of grid
resolution influence on the hydrodynamic dispersion coefficient are presented in Subsection 1.4.6.

1.4 Mass transport simulation
1.4.1 Advection–diffusion equation
A classical tool for the quantitative description of the mass transport due to advection and molecular
diffusion is the solution of the advection–diffusion equation89 (ADE):

∂C

∂t
= ∇ · (D∇C)−∇ · (~vC). (1.30)

This equation states that, with the absence of sources, evolution of solute concentration C(~x, t)

within a control volume is defined by diffusive flux (the first term on the right) and advective
flux (the last term) entering this volume. The diffusion tensor is denoted by D, and ~v is the fluid
velocity. Equation (1.30) is a combination of parabolic and hyperbolic differential equations.108

This causes difficulties while solving equation (1.30) numerically because a discrete equation of
(1.30) changes its nature from parabolic to hyperbolic as advection starts to dominate diffusion.109

Discrete schemes based on the solution of equation (1.30) suffer from mass loss, oscillations of
the solution,110–112 and numerical dispersion.112–114 The latter manifests itself as artificial distortions
of concentration profiles in case of advection dominated regimes. High degrees of anisotropy often
observed for hydrodynamic dispersion coefficients (comparing longitudinal and transverse ones,
see, for example, Chapter 5) aggravate this problem.

Interesting is the fact that often the numerical solution of ADE is mentioned as not capable to
reproduce non-Gaussian behavior of the dispersion.115–118 However, it was shown that when spatial

108 A. N. Tikhonov and A. A. Samarskii. Equations of mathematical physics. Dover Publications, 1990.
109 O. C. Zienkiewicz, P. Nithiarasu, and R. L. Taylor. The finite element method for fluid dynamics. 6th ed. Elsevier

Butterworth–Heinemann, 2005.
110 M.-K. Liu and J. H. Seinfeld. Atmos. Environ., 9: 555–574, 1975.
111 B. P. Leonard. Comput. Methods Appl. Mech. Eng., 88: 17–74, 1991.
112 B. H. Devkota and J. Imberger. Water Resour. Res., 45: W12406, 2009.
113 W. Kinzelbach. Numerische Methoden zur Modellierung des Transports von Schadstoffen im Grundwasser. 2nd ed.

Oldenbourg Verlag, 1992.
114 B. Lin and R. A. Falconer. J. Hydraul. Eng., 123: 303–314, 1997.
115 A. Cortis and B. Berkowitz. Soil Sci. Soc. Am. J., 68: 1539–1548, 2004.
116 S. Anwar, A. Cortis, and M. C. Sukop. Prog. Comput. Fluid Dyn., 8: 213–221, 2008.
117 Y. Zhu and P. J. Fox. J. Comput. Phys., 182: 622–645, 2002.
118 S. P. Kuttanikkad. Pore-scale direct numerical simulation of flow and transport in porous media. PhD thesis. Germany,

Ruprecht Karl University of Heidelberg, 2009.
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heterogeneities of porous media are resolved on the pore level, the numerical solution of ADE
demonstrates correct behavior.119 This fact points to the importance of the pore-level transport
processes and their crucial influence on the macroscopic transport processes in porous media.

In this thesis, the Random Walk Particle Tracking (RWPT) method was employed; contrary to
the Eulerian methods based on the solution of equation (1.30), RWPT is a Lagrangian approach
and does not solve the ADE directly. A description of RWPT is given below.

1.4.2 Random walk particle tracking method
The basic idea of RWPT2,120,121 is to simulate solute transport as the motion of a large number
of representative particles, which, in this work, are referred to as inert tracers. Tracers have the
following properties:

• infinitely small dimensions and no mass,
• no interaction with each other,
• no adsorption/desorption from the surface of porous media,
• they do not affect the motion of the fluid.

The time evolution of a tracer is defined by superposition of two processes: drift due to flow of
carrier fluid and Brownian motion due to molecular diffusion. Mathematically, the tracer behavior
can be described by a stochastic differential equation122:

d~r(t) = ~v(~r(t))dt+ Bd ~W (t). (1.31)

Here ~r(t) and ~v(~r(t)) are the tracer spatial coordinate and fluid flow velocity at the current location
of the tracer, B is the second-order tensor with non-zero diagonal elements equal to

√
2D, where

D denotes molecular diffusion coefficient; d ~W is an increment of vector Wiener process (often
called Brownian motion). The connection between equation (1.31), Fokker–Planck equation, and
ADE is described elsewhere.121

In the general case, equation (1.31) cannot be solved analytically but only numerically. The
simplest and often used18,123,124 numerical solution of equation (1.31) is to employ the one-step
Euler approximation in the following form125:

~r(t+ ∆t) = ~r(t) + ~v(~r(t))∆t+
√

2D∆t ~N, (1.32)

where ∆t is the time step and ~N is a vector having random components normally distributed with
zero mean and unity variance. A sequence of pseudo-random normally distributed random values,

119 P. Salamon, D. Fernàndez-Garcia, and J. J. Gómez-Hernández. Water Resour. Res., 43: W08404, 2007.
2 J. A. Rudnick and G. D. Gaspari. Elements of the random walk: an introduction for advanced students and researchers.
Cambridge University Press, 2004.

120 F. Delay, P. Ackerer, and C. Danquigny. Vadose Zone J., 4: 360–379, 2005.
121 P. Salamon, D. Fernàndez-Garcia, and J. J. Gómez-Hernández. J. Contam. Hydrol., 87: 277–305, 2006.
122 C. W. Gardiner. Handbook of stochastic methods: for physics, chemistry and the natural sciences. 2nd ed.

Springer-Verlag, 1996.
123 R. S. Maier et al. Phys. Fluids, 12: 2065–2079, 2000.
124 D. Spivakovskaya, A. W. Heemink, and E. Deleersnijder. Ocean Dyn., 57: 189–203, 2007.
125 P. E. Kloeden and E. Platen. Numerical solution of stochastic differential equations. Springer-Verlag, 1995.
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which is generated by the digital computers, can be used to approximate the increment of Wiener
process d ~W ,125 and, consequently, to generate components of ~N .

Depending on whether tracer trajectories or only statistical moments of tracers ensemble are of
importance, strong or weak convergence criteria must be applied to equation (1.32), respectively.125

The value of interest in this study is the hydrodynamic dispersion coefficient, which is calculated
from the statistical moments of the tracer ensemble, and, therefore, a weak convergence criterion
is used; the order of weak convergence in time step ∆t of the approximation (1.32) is 1.0.

As advantages of RWPT, one can mention the simplicity of the method program realization
and its further parallelization, absence of numerical dispersion, and conservation of mass (due
to constant amount of tracers in the system). At the same time, due to statistical noise, whose
amplitude decreases with the square root of the tracer amount, a large amount of tracers is needed
to accurately reproduce the concentration profiles,126,127 and high computational times in the case
of mass transport simulations in homogenous systems127,128 can be attributed to the limitations of
RWPT.

1.4.3 Hydrodynamic dispersion coefficient and Péclet number
The value of most interest in this thesis is the hydrodynamic dispersion coefficient. As mentioned
before, mass transport of a solute is simulated as motion of a large number of tracer particles. The
value of the hydrodynamic dispersion coefficient is calculated as follows129:

Dz(t) =
1

2N

d

dt

N∑
i=1

(∆zi(t)− 〈∆zi(t)〉) ,2 (1.33)

where ∆zi(t) is the z-displacement of i-th tracer after time t, 〈. . .〉 denotes averaging over the
whole tracer ensemble, and N is the number of tracer particles. Equation (1.33) states that the
hydrodynamic dispersion coefficient along z-direction is proportional to the rate of the spreading of
tracers around their mean position along the z-direction. In this thesis, the hydrodynamic dispersion
coefficient is calculated along two principal directions, parallel and orthogonal to the direction of
fluid flow. The coefficient calculated along the former direction is denoted as longitudinal (DL) or
axial (Dax), while the latter as transverse (DT).

It is more convenient to operate not with the absolute value of Dz, but with its value nor-
malized by the molecular diffusion coefficient of the tracers, Dm. After such a normalization, the
quantity Dz/Dm shows how large the rate of tracers spreading is relative to the rate of spreading
due to the molecular diffusion only. In random sphere packings studied here, Dz/Dm takes values
from zero to several thousands, depending on the packing geometry, spatial direction along which
the coefficient is determined, and the flow velocity.

126 H. V. Nguyen et al. J. Hydrol., 215: 188–201, 1999.
127 P. H. Israelsson, Y. D. Kim, and E. E. Adams. Environ. Modell. Software, 21: 1631–1649, 2006.
128 A. E. Hassan and M. M. Mohamed. J. Hydrol., 275: 242–260, 2003.
129 H. Brenner. Philos. Trans. R. Soc. A, 297: 81–133, 1980.
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Obviously, the hydrodynamic dispersion coefficient depends on the average flow velocity
through a packing: higher flow velocity results in larger values of the coefficient. It is common to
characterize the velocity of flow through the porous material in terms of the dimensionless Péclet
number (or reduced velocity):

Pe =
uavlc
Dm

, (1.34)

which is the ratio of advection to diffusion transport rates occurring in a system with a given
characteristic length lc. In equation (1.34), uav is the average flow velocity through the porous
material and Dm is the molecular diffusion coefficient. In the systems studied in this thesis, mass
transport can be formally characterized as “diffusion-dominated” if Pe takes values about unity
and “advection-dominated” if Pe is on the order of hundreds or thousands (see Figure 5.6).

In-depth study of the hydrodynamic dispersion in sphere packings requires the simulation of
mass transport over a wide range of Péclet numbers in each packing. Low Reynolds number flow
(Re � 1, Re = dpuav/ν, where ν is the kinematic viscosity), also known as creeping or Stokes
flow, is a typical flow regime in chromatographic beds and is of interest in this study. According
to Darcy’s law (equation (1.28)), a change of the pressure gradient driving the fluid causes a
corresponding linear change of the average flow velocity as far as Re� 1 is satisfied,130 and local
flow components follow the same linear scaling.131,132 This allows us to calculate one flow field
for a given packing and to perform further mass transport simulations in this packing using the
simulated flow field linearly scaled according to the required Péclet numbers.

1.4.4 Boundary conditions
In this thesis the motion of tracers is simulated in the interparticle void space only (i.e., no motion
occurs in the solid phase) using the no-flux boundary condition (BC) at the solid boundaries of the
spheres and confining wall of a packing, while at the external boundaries of the packing periodic
boundary conditions are used (along the axial direction/direction of the applied pressure gradient
in the confined packings and along the three directions in the unconfined ones). The no-flux BC at
a solid–liquid interface can be implemented using different approaches133,134:

• Specular reflection.118,134,135 This BC implies mirror-like reflection of a tracer from the solid–
liquid interface if a collision with the interface occurs.

• Rejection.132,136–138 If a tracer crosses the solid–liquid interface, such a move is rejected, and
the tracer stays at its previous position during the current iteration.

130 D. Hlushkou and U. Tallarek. J. Chromatogr. A, 1126: 70–85, 2006.
131 J. C. Giddings. Dynamics of chromatography: principles and theory. Marcel Dekker, 1965.
132 M. R. Schure et al. Anal. Chem., 74: 6006–6016, 2002.
133 P. Szymczak and A. J. C. Ladd. Phys. Rev. E, 68: 036704, 2003.
134 R. K. Nandigam and D. M. Kroll. Biophys. J., 92: 3368–3378, 2007.
135 J. Hrabe, S. Hrabĕtová, and K. Segeth. Biophys. J., 87: 1606–1617, 2004.
136 I. C. Kim and S. Torquato. J. Chem. Phys., 96: 1498–1503, 1992.
137 P. N. Sen et al. Phys. Rev. B, 49: 215–225, 1994.
138 A. S. Kim and H. Chen. J. Membr. Sci., 279: 129–139, 2006.
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• Multiple rejection.139,140 If at the current iteration a tracer hits the solid wall, such a move is
cancelled and the diffusion component of the tracer displacement is recalculated until the
tracer’s final position (at the current iteration) will be in the fluid phase.

• Interruption.18,123,141,142 Here a time step (∆t) of the tracer crossing the interface at the current
iteration is split into two parts, before (∆t1) and after (∆t2 = ∆t−∆t1) the interface crossing,
respectively. Then the tracer is moved to the point of the contact with the interface, and an
additional displacement with the time step ∆t2 is performed.

• Time step division.124,143,144 If a tracer crosses a boundary, such a move is cancelled, the default
time step is divided into smaller steps, and the tracer performs several moves with the reduced
time steps; this procedure is repeated until the total time step at the current iteration will be
equal to the default one.

In our simulations we employ the multiple rejection BC. It has been demonstrated that rejection,
multiple rejection, and interruption, contrary to the more precise and computationally expensive
specular reflection approach, lead to an artificial distortion of concentration profiles near the sol-
id–liquid interface.133,134 In order to check how sensitive the hydrodynamic dispersion coefficient
(Subsection 1.4.3) is to the error introduced by the multiple rejection BC, we performed simulations
of mass transport using ∆t, ∆t0.1, and ∆t0.02 time steps, where ∆t0.02 = 0.2∆t0.1 = 0.02∆t, and
∆t denotes the default time step used in this work. The reduction of the time step results in
reduced relative influence of BC on the tracers motion. The default time step ∆t is selected so
that the maximal advective–diffusive displacement of a tracer does not exceed half of the lattice
space step. Simulations were performed for both diffusion- and advection-dominated transport
regimes in the most dense packing employed in this study. In such a packing the influence of an
error introduced by the employed BC on the hydrodynamic dispersion coefficient is expected to
be maximal compared to the more loose packings. The packing has a porosity of 0.366, a spatial
dimension of 10× 10× 75 d3

p, and was discretized with a spatial resolution of n = 30 and n = 90

nodes per particle diameter (dp).

The results presented in Figure 1.7 demonstrate weak influence of the time step refinement on
the value of the hydrodynamic dispersion coefficient (this was also mentioned by Maier et al.123):
the difference in close-to-asymptotic rates of the dispersion coefficient (calculated within the range
2–2.5 τD) between ∆t and ∆t0.02 is−0.8% at low and +3% at high flow rates (Pe = 5 and Pe = 500,
respectively). As was shown by Szymczak and Ladd,133 the multiple rejection BC decreases tracer
concentration near reflecting walls (cf. Figures 1 and 2 in Reference [133]). Therefore, we can
assume that the reduction of the time step allows more tracers to approach the vicinity of the
reflecting wall, which is the “stair-step” surface of the packing spheres and confining wall. In case
of the low flow rate (Figure 1.7a), this results in a larger amount of tracer collisions with the wall,

139 T. Rage. Studies of tracer dispersion and fluid flow in porous media. PhD thesis. Norway, University of Oslo, 1996.
140 S. Trinh, P. Arce, and B. R. Locke. Transp. Porous Media, 38: 241–259, 2000.
141 J. Salles et al. Phys. Fluids A, 5: 2348–2376, 1993.
142 F. J. Jiménez-Hornero, J. V. Giráldez, and A. Laguna. Vadose Zone J., 4: 310–316, 2005.
143 W. M. Charles. Transport modelling in coastal waters using stochastic differential equations. PhD thesis. The

Netherlands, Delft University of Technology, 2007.
144 J. W. Stijnen. Numerical methods for stochastic environmental models. PhD thesis. The Netherlands, Delft University

of Technology, 2002.
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Figure 1.7: Normalized longitudinal hydrodynamic dispersion coefficient as a function of the dispersive (τD) and
convective (τC) times in a periodic random sphere packing; τD = 2DTt/d

2
p and τC = uavt/L, where DT, dp, uav,

and L = 75 dp denote transverse dispersion coefficient, diameter of a spherical particle, the average (interstitial) flow
velocity, and the packing length, respectively. Simulations were performed at Pe = 5 and Pe = 500 using different time
steps of RWPT method and a lattice resolution of n = 30 grid nodes per sphere diameter. Bold black line in part b)
denotes a simulation of the hydrodynamic dispersion at high grid resolution (n = 90). Horizontal dashed line in part b)
helps to identify slow growth of the dispersion coefficient observed in simulations with n = 30.

the slow down of the tracer diffusion movement around spheres and, finally, in a reduction of the
dispersion coefficient. At high flow rate (Figure 1.7b), the increase in the tracer concentration near
the solid surfaces allows a larger fraction of the tracers to be slowed down due to exploring the
stagnant fluid “boundary layers” surrounding spheres within a packing145 and to get these “slow”
tracers behind the tracers being away from the spheres and moving with the flow.

For all involved time steps, Figure 1.7b demonstrates a weak growth of the hydrodynamic
dispersion coefficient after its close-to-asymptotic value is reached (i.e., after∼2 τD, see Chapter 5).
This can be related to the used value of the grid resolution (n = 30): with an increase of the spatial
resolution up to n = 90 (bold black line in Figure 1.7b), the growth rate of the dispersion coefficient
after one τD decreases. Additional information on the influence of the grid resolution on the time
evolution of the dispersion coefficient is given in Subsection 1.4.6.

1.4.5 Random displacement and initial conditions
As mentioned before, the diffusion displacement of a tracer is generated using random numbers
calculated from the Gaussian distribution with zero mean and unity variance. To obtain weak
convergence, the distribution has not necessarily Gaussian, the only requirements are the corre-
spondence of its statistical moments to the ones of the Gaussian distribution and independency of
the generated values. Often uniform distributions of finite-range are used18,123,137,141,142,146 due to

145 D. L. Koch and J. F. Brady. J. Fluid Mech., 154: 399–427, 1985.
146 M. R. Schure. In: Advances in Chromatography. P. R. Brown and E. Grushka, eds. Vol. 39, 139–200. Marcel Dekker

Publishing, 1998.
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simplicity of handling and speed of the generated random numbers. Contrary to the finite-range
distributions, normally distributed numbers take values in the infinite range due to tailing of the
Gaussian distribution. To avoid very large values of the tracer diffusion displacement xd, originating
from tails of the Gaussian distribution, xd is generated using truncated Gaussian distribution: if the
diffusion displacement xd of a tracer exceeds xt, it is omitted and a new displacement is generated
instead. In our simulations the minimal value of xt is chosen equal to 4

√
Dm∆t which is sufficiently

large to make the error introduced by truncation negligible.133

In each simulation of mass transport, the initial distributions of tracers are done in the whole
interparticle void space. This enables collection of the information on the heterogeneity and corre-
sponding transport properties of a given packing more rapidly than in case of plane-wise distribu-
tion of tracers at the packing inlet (which is the case for the breakthrough experiments).

1.4.6 Numerical behavior and validation of the model
Hydrodynamic dispersion in open channels
We begin validation of the implemented RWPT method by the simulation of hydrodynamic disper-
sion in two simple geometries, open channels of circular and square cross section. Hydraulic flow
of a viscous fluid in open channels, for example, formed by two parallel plates or a tube, results
in the parabolic-like flow profiles (see Figure 4.2) with zero transverse and non-zero longitudinal
components. A delta pulse of a solute injected at the channel inlet flows downstream along the
channel and is dispersed due to molecular diffusion and non-uniformity of the flow field. Hydrody-
namic dispersion in open channel geometries, also known as Taylor–Aris dispersion,147–149 can be
quantified as150

DL

Dm

= 1 +
Pe2

210
f, (1.35)

where DL is the hydrodynamic dispersion coefficient calculated along the flow direction, Dm

denotes the molecular diffusion coefficient, and Pe is the Péclet number (Subsection 1.4.3). Equa-
tion (1.35) with f = 1 describes dispersion in the system presented by two parallel plates. In
the general case, f is a function depending on the geometry of a channel and f ≥ 1 for most
channel cross sections.150 Channels with circular and square cross sections are characterized by
fcir = 210/192 ≈ 1.09147 and fsq ≈ 1.75,150 respectively. It should be noted that an exact value of
fsq is still under discussion.151,152

Simulation of hydrodynamic dispersion was performed in the open channels of circular and
square cross section with lateral lattice dimensions of 50 lattice nodes per circle diameter dcir and
square side asq, respectively. The Péclet number was specified as Pecir = uavdcir/Dm and Pesq =

147 G. Taylor. Philos. Trans. R. Soc. A, 219: 186–203, 1953.
148 G. Taylor. Philos. Trans. R. Soc. A, 225: 473–477, 1954.
149 R. Aris. Philos. Trans. R. Soc. A, 252: 538–550, 1959.
150 D. Dutta, A. Ramachandran, and D. T. Leighton. Microfluid. Nanofluid., 2: 275–290, 2006.
151 H. Ahn and S. Brandani. AIChE J., 51: 1980–1990, 2005.
152 D. Liang et al. Lab Chip, 7: 1062–1073, 2007.
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Figure 1.8: a) Time evolution of the hydrodynamic dispersion coefficient in open channel with circular and square cross
sections at Pe = 100. b) Close-to-asymptotic values of the dispersion coefficient normalized by its value calculated using
equation (1.35) with fcir = 210/192 and fsq = 1.75.

uavasq/Dm for circular and square geometries, respectively. Figure 1.8a shows the hydrodynamic
dispersion coefficient DL(t)/Dm as a function of the diffusive time τD = t 2Dm/l

2
c (here t is the

simulation time and lc is the characteristic length, selected as shown in Figure 1.8a). Time evolution
of the dispersion curve in Figure 1.8a can be formally split into two parts: “pre-asymptotic” or
“transient,” where the dispersion coefficient grows with time, and “close-to-asymptotic,” where it
stays approximately constant. Growth of the dispersion coefficient in the transient part of the
curve is related to the i) difference in convective and diffusive displacements, which depend
on time as t and

√
t, respectively, and ii) nonuniformity of the flow field. At very short times

(t� τD) the solute is spread mainly due to diffusion and the value of the normalized hydrodynamic
dispersion coefficient is close to unity. At longer times, nonuniform solute displacement due to a
flow maldistribution leads to the growth of the dispersion coefficient. Molecular diffusion causes
solute species to migrate between flow streamlines and the dispersion coefficient takes its close-
to-asymptotic value after solute species have “explored” the longest distance between velocity
extremes of the flow field.

An exact solution for the transient part of the dispersion curve is still unknown,153,154 and
we compared only close-to-asymptotic values of the dispersion coefficient simulated at different
Péclet numbers with data available in the literature (i.e., using fcir = 210/192 and fsq = 1.75). As
shown in Figure 1.8b, the comparison reveals an excellent agreement of the simulated dispersion
coefficients with the literature data for the two simple systems studied here.

Hydrodynamic dispersion in ordered sphere packings
We do not analyze the accuracy of the RWPT model in the case of crystal structures because ana-
lytical solutions for the dispersion coefficient are not available for any of them (FCC, HCP, BCC,
or SC) and only a limited amount of data on hydrodynamic dispersion coefficients is available

153 A. Adrover et al. Anal. Chem., 81: 8009–8014, 2009.
154 M. Giona et al. Phys. Fluids, 21: 123601, 2009.
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Figure 1.9: Evolution of the hydrodynamic coefficient as a function of the convective τC and dispersive τD times.
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2
p, where DT denotes

the transverse dispersion coefficient. Simulations are performed at Pe = 500 in sphere packings with length of 6, 15, 25,
75, and 150 dp and transverse dimension of 10 dp × 10 dp, porosity of ε = 0.366, and discretized with spatial resolution
of n = 90 grid nodes per sphere diameter.

in the literature.123,132,155 Systematic numerical study of hydrodynamic dispersion in crystals re-
quires a large amount of computational resources because the dispersion coefficient demonstrates
anisotropic behavior in crystal structures,141,156 contrary to the permeability in the case of Stokes
flow (Re � 1) and effective diffusion, which are independent on the selected direction in a
crystal.99,157

Influence of packing length on hydrodynamic dispersion coefficient
While for the simulations in crystal structures the simulation domain may contain one unit cell of a
given crystal, the choice of the domain size for the random packings is not trivial. Figure 1.9 shows
the evolution of the hydrodynamic dispersion coefficient in the bulk packings with the porosity of
ε = 0.366 and the spatial dimension of L dp× 10 dp× 10 dp, where dp is the sphere diameter and L
denotes the dimensionless packing length along the direction of flow. Simulations were performed
for the following values of L: 6, 15, 25, 75, and 150. As Figure 1.9 shows, the dispersion coefficient
converges to the lower values as the packing length increases from 6 to 75; a further increase of the
packing length (up to L = 150) does not affect the time evolution and close-to-asymptotic value
of the dispersion coefficient. Such a behavior is related to the situation when some of the tracers
reentering periodic domain of the packing (after τC/L ≈ 0.5–1, where τC = uavt/dp and uav are
the convective time and mean flow velocity, respectively) explore regions of the packing void space
with similar flow velocities. In other words, to determine the close-to-asymptotic hydrodynamic
dispersion coefficient of a given packing which is free from the enhanced influence of some flow

155 D. J. Gunn and C. Pryce. Trans. Inst. Chem. Eng., 47: T341, 1969.
156 H. P. A. Souto and C. Moyne. Phys. Fluids, 9: 2253–2263, 1997.
157 H. P. A. Souto and C. Moyne. Phys. Fluids, 9: 2243–2252, 1997.
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paths, the length of the simulation domain must be long enough to observe close-to-asymptotic
behavior of the dispersion coefficient before a fraction of the tracers will reenter the simulation
domain. The influence of the packing length on the hydrodynamic dispersion coefficient was
reported before,42,123,158 and the minimal domain length to avoid recorrelation was suggested to
be τC/L > 0.25–0.5. It is important to note that we observed close-to-asymptotic behavior for
the packings of all involved lengths (6–150, data not shown), i.e. the absence of growth of the
dispersion coefficient does not imply that the observed value of the coefficient is free from a
“recorrelation effect.” If the domain length is short (according to the criterion above) and periodic
conditions are not used along the domain length, the dispersion coefficient will be detected in its
pre-asymptotic regime.

Despite the fact that the influence of the domain length was mentioned many times in liter-
ature, there is a number of recent studies118,159–161 which have used short simulation domains to
determine hydrodynamic dispersion coefficients, and some of them are done in two-dimensional
systems, for which correlations persisting in the flow field have a longer range than those in three
dimensional flows.162,163

Influence of grid resolution on hydrodynamic dispersion coefficient
Figures 1.10a,b,c show simulation results on the grid convergence of the hydrodynamic dispersion
coefficient towards its value calculated at high grid resolution (n = 90). Comparing with the grid
convergence of permeability values (Figure 1.5), data for hydrodynamic dispersion demonstrate
significant scatter, especially for quadratic packings. This can be attributed to the high sensitivity
of the hydrodynamic dispersion coefficient on the packing microstructure which, in turn, is varied
with the discretization at different grid resolutions. In addition, corners of the quadratic packings
are regions of advanced fluid flow (see Figure 2.4) and sources of a significant increase of the
dispersion coefficient compared to the geometries without corners. The error resulting from the
discrete representation of the corner regions causes an additional scatter of the hydrodynamic
dispersion coefficient, as shown in Figures 1.10b,c.

Figure 1.10c has missing data points at low grid resolution (n = 10–25) for some of the
studied packings. This issue is related to the situation demonstrated in Figure 1.10d, where we
present the time evolution of the hydrodynamic dispersion coefficient in a bulk packing (Rx0.001,
ε = 0.46) simulated at Pe = 500 and the grid resolutions of n = 10, 30, and 90. As a time unit,
we selected dispersive time τD (see caption of Figure 1.10 for details) which allows us to unify
the transient time of the hydrodynamic dispersion coefficient to its close-to-asymptotic value: as
it will be demonstrated later (see Chapters 5 and 6), the hydrodynamic dispersion coefficient in
bulk packings arrives at its close-to-asymptotic value after τD ≈ 1–2 for all studied Péclet numbers.
As can be seen in Figure 1.10d, the dispersion coefficients simulated at a moderate flow rate

158 C. P. Lowe and D. Frenkel. Phys. Rev. Lett., 77: 4552–4555, 1996.
159 A. M. Tartakovsky. Phys. Rev. E, 82: 026302, 2010.
160 D. Buyuktas and W. W. Wallender. Heat Mass Transfer, 40: 261–270, 2004.
161 J. Billen et al. J. Chromatogr. A, 1073: 53–61, 2005.
162 B. J. Alder and T. E. Wainwright. Phys. Rev. A, 1: 18–21, 1970.
163 D. L. Koch, R. J. Hill, and A. S. Sangani. Phys. Fluids, 10: 3035–3037, 1998.
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τD = 2DTt/d

2
p (cf. Figure 5.3a). At n = 10–25 and Pe = 500 close-to-asymptotic behavior of the dispersion coefficient

was not observed for some of the studied packings, and data for these simulations are not presented in part c).

(Pe = 50) reach their close-to-asymptotic value after τD ≈ 1 for all used grid resolutions. This also
holds for higher Péclet numbers (Pe = 250, 500) and n = 30, 90. However, packing discretized
with a spatial resolution of n = 10 demonstrates qualitatively different behavior: at high Péclet
numbers the dispersion coefficients diverge after τD ≈ 1, and the corresponding divergence rate
strongly depends on the Péclet number (cf. red curves at Pe = 250 and Pe = 500 in Figure 1.10d).
Such a behavior of DL/Dm was observed but not commented upon in the study of Maier et al.123

(see Figure 13 in their work).

The aforementioned divergence of the dispersion coefficients was reported in the work of
Lowe and Frenkel,158 (which was later criticized by Koch et al.163 and Maier et al.123) who simulated
advection–diffusion mass transport in a bulk sphere packing with a dimension of 10× 10× 28 dp,
porosity of ε = 0.55, and discretized with grid resolutions of n = 5 and n = 9. They used LBM and
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the moment propagation method164,165 to simulate flow and dispersion, respectively. (The authors
analyzed time evolution of the dispersion coefficient by means of the velocity autocorrelation
function C(t) which is related to the dispersion coefficient as DL(t)/Dm =

∫ t
0
C(t′)dt′.) Observing

a time behavior as indicated by the red lines in Figure 1.10d, these authors158 posed a fundamental
question on the existence of hydrodynamic dispersion coefficients. Maier et al.123 argued that the
divergence of the dispersion coefficients in the work of Lowe and Frenkel158 could arise from
numerical dispersion caused by the moment propagation method. However, as can be seen in
Figure 1.10d, divergence can occur solely due to a poorly resolved simulation domain. We also
note that a slight divergence of DL/Dm is observed in our simulations at n = 30 and n = 90 after
long simulation time (Figure 1.7b). To our knowledge, such a behavior of the simulation approach
has never been reported before.

Hydrodynamic dispersion in random sphere packings
Further, we compare the close-to-asymptotic values of the dispersion coefficient with experimental
and simulation results from literature. In many studies of hydrodynamic dispersion a comparison
of the dispersion coefficients with other literature data is done using double logarithmic scale
graphics,18,76,118,166–170 which, on one hand, is related to a wide range of employed Péclet numbers
and corresponding dispersion coefficients, but, on the other hand, such a representation visually
reduces a large scatter of the literature data and allows further description of a wide range of
dispersion coefficients obtained at a fixed Péclet number to be characterized as “good agreement
with the literature.” In our study, we selected only two Péclet numbers, moderate (Pe = 100) and
high (Pe = 500), in a way to i) closely match corresponding dimensionless flow rates of the studies
chosen for comparison, and ii) use plots with linear scale for comparison.

We generated six types of bulk sphere packings, four with JT (R- and S-packings; Subsec-
tion 1.1.1) and two with MC (Ω-packings; Subsection 1.1.2) algorithms, resulting in six types of
a packing microstructure or degree of heterogeneity (DoH). Packings of each type have a spacial
dimension of approximately 10 dp× 10 dp× 70 dp and porosities between random-close (ε ≈ 0.366)
and random-loose (ε ≈ 0.46) packing limits,171 and were discretized at relatively high resolution of
n = 60 grid nodes per sphere diameter. We use different packing types because, as it is shown in
Chapter 6, a packing microstructure can have significant influence on the hydrodynamic dispersion
coefficient. To our knowledge, the influence of the packing microstructure on the hydrodynamic
dispersion has never been reported before, and, therefore, explicit information on the DoH is miss-
ing in the literature data related to hydrodynamic dispersion. But in some cases, when the packing

164 D. Frenkel and M. H. Ernst. Phys. Rev. Lett., 63: 2165–2168, 1989.
165 R. M. H. Merks, A. G. Hoekstra, and P. M. A. Sloot. J. Comput. Phys., 183: 563–576, 2002.
166 J. M. P. Q. Delgado. Heat Mass Transfer, 42: 279–310, 2006.
167 M. Quintard and S. Whitaker. Chem. Eng. Sci., 48: 2537–2564, 1993.
168 M. Stöhr. Analysis of flow and transport in refractive index matched porous media. PhD thesis. Germany, Ruprecht

Karl University of Heidelberg, 2003.
169 A. Jafari et al. Chem. Eng. J., 144: 476–482, 2008.
170 B. Bijeljic and M. J. Blunt. Water Resour. Res., 42: W01202, 2006.
171 C. Song, P. Wang, and H. A. Makse. Nature, 453: 629–632, 2008.
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generation algorithm (or preparation protocol) is described in detail, the packing microstructure
can be reproduced using the generation algorithm with its corresponding parameters taken from
the study of interest.

Comparison of hydrodynamic dispersion coefficients with literature data
Figure 1.11 shows close-to-asymptotic values of the dispersion coefficient for all six types of the
generated packings. As can be seen, dispersion coefficients in the packing of each type demonstrate
different dependence on porosity. For example, dispersion coefficients of Ωx0.95 packings are
almost independent of porosity (what was also mentioned in other studies where MC algorithm
was employed158,172) while dispersion in Rx0.001 packings is strongly affected by the value of
porosity. We note that the porosity behavior of the dispersion coefficients shown in Figure 1.11 is
also captured by the geometrical measures based on the Voronoi tessellation of the packings. The
reader is referred to Chapters 6 and 7, where we perform a detailed analysis of the microstructure
of the bulk packings used here.

Simulated dispersion coefficients of the bulk packings were compared with (Figure 1.11,
crosses) i) data from NMR173–175 measurements of Seymour and Callaghan,176 ii) dispersion co-
efficients from the simulations of Augier et al.177 which are based on the numerical solution of
Navier–Stokes and advection–diffusion equations, iii) dispersion coefficients simulated by Maier
et al.123,172 in computer-generated sphere packings, and iv) NMR data of Scheven et al.178 The au-
thors of the aforementioned studies have used Péclet numbers different from Pe = 100 or Pe = 500.
Therefore, we have taken values of the dispersion coefficient DL/Dm at Péclet numbers Pe used by
these authors and scaled DL/Dm to the closest value of the current study, Pe = 100 or Pe = 500,
according to the DL(Pe)/Dm correlations proposed by the authors or using widely accepted power
law scaling (DL(Pe)/Dm ∼ Peα with the value of α = 1.2179) when such a correlation was not
given (see Table 1.2).

NMR measurements of Seymour and Callaghan176 shown in Figure 1.11 (red crosses) were
performed in a confined cylindrical packing with a cylinder-to-particle diameter ratio of ∼ 21

and porosity of 0.44. As it is shown in Chapter 5, cylinders with such lateral dimensions have
several times larger close-to-asymptotic dispersion coefficient than a bulk packing of similar porosity,
whereas the time required to reach close-to-asymptotic values of the dispersion coefficient for this
cylindrical packing is two orders of magnitude larger than for the bulk one. Seymour and Callaghan
presented data from two NMR measurements, with ∆ = 10 ms and ∆ = 30 ms (where ∆ is the
measurement time). In Figure 1.11, we present dispersion coefficients measured after a time of
∆ = 30 ms which corresponds to the convective time of τC ≈ 0.8 for Pe = 100 and τC ≈ 4.0 for

172 R. S. Maier et al. Water Resour. Res., 44: W06S03, 2008.
173 A. A. Khrapitchev and P. T. Callaghan. Phys. Fluids, 15: 2649–2660, 2003.
174 D. S. Grebenkov. Rev. Mod. Phys., 79: 1077–1137, 2007.
175 D. S. Grebenkov. Concepts Magn. Reson. Part A, 36A: 24–35, 2010.
176 J. D. Seymour and P. T. Callaghan. AIChE J., 43: 2096–2111, 1997.
177 F. Augier, F. Idoux, and J. Y. Delenne. Chem. Eng. Sci., 65: 1055–1064, 2010.
178 U. M. Scheven, R. Harris, and M. L. Johns. Phys. Rev. Lett., 99: 054502, 2007.
179 M. Sahimi. Flow and transport in porous media and fractured rock: From classical methods to modern approaches.

Wiley-VCH, 1995.
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Table 1.2: Original data on the dispersion coefficients digitized from literature, and the scaled values of the dispersion
coefficients corresponding to Pe = 100, 500.

Original study Porosity Pe Dax/Dm Scaling law
original scaled original scaled

Seymour and Callaghan176 0.44 68 100 22.5 38.6 Dax/Dm ∼ Pe1.37

99 100 32.8 33.5
134 100 43.4 29.1
340 500 221 375
400 500 257 349
811 500 732 377

Augier et al.177 0.37 70 100 31.4 44.3 Dax/Dm ∼ Pe1.0

1464 500 630 219

Maier et al.123 0.44 95 100 28 29 Dax/Dm ∼ Pe1.2

476 500 191 203

Maier et al.172 0.36 476 500 222 235 Dax/Dm ∼ Pe1.2

0.40 476 500 197 208
0.45 476 500 200 212

Scheven et al.178 0.367 85.9 100 29.1 34.9 Dax/Dm ∼ Pe1.2

0.374 87.0 100 30.0 35.5
130.9 100 48.5 35.1

Pe = 500. These values of convective time and Péclet number result in underdeveloped values of
the dispersion coefficient of a bulk packing for Pe = 100 and Pe = 500 (for the corresponding
time scales see, for example, Figure 13 in Reference [123]). As it was demonstrated in the study
of Maier et al.,180 dispersion coefficients at such short times in confined packing are close to the
value of a bulk packing with similar properties, which are defined by the packing protocol and
average porosity. Hence, the data of Seymour and Callaghan176 with ∆ = 30 ms correspond to
the dispersion values of the bulk region of their packing, and dispersion at lower Péclet number is
underdeveloped compared to its higher Péclet number counterpart.

Dispersion coefficients in the study of Augier et al.177 (Figure 1.11, green crosses) were simu-
lated in a bulk packing extracted from the central region of a confined cylindrical packing with the
aspect ratio of ∼24. Generation of the confined polydisperse sphere packing was performed with
discrete element method.181 Large aspect ratio (∼24) of the cylindrical packing and polydispersity
of spheres resulted in a relatively low packing porosity of 0.33. Flow and mass transport problems
were solved using traditional computational approaches based on the numerical solution of Navier–
Stokes and advection–diffusion equations. Employed numerical methods require tessellation of
the interparticle void space and sphere surfaces into a set of irregular space elements. The authors
reported an inability of their numerical approach to perform the space tessellation for the case of
touching spheres. Therefore, each sphere of the generated packing was contracted by 2% of its
diameter what resulted in a final packing porosity of 0.37. On the one hand, our simulation results

180 R. S. Maier, D. M. Kroll, and H. T. Davis. AIChE J., 53: 527–530, 2007.
181 P. A. Cundall and O. D. L. Strack. Geotechnique, 29: 47–65, 1979.
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Figure 1.11: Close-to-asymptotic values of the hydrodynamic dispersion coefficient of i) bulk packings generated with
JT (R- and S-packings) and MC (Ω- packings) algorithms, ii) NMR measurements of Seymour and Callaghan,176 iii) NMR
measurements of Scheven et al.,178 iv) LBM and RWPT simulations of Maier et al.123,172 in sphere packings generated with
MC algorithm, and v) simulations of Augier et al.177 based on the solution of ADE in a packing generated with discrete
element method.181 Results are shown for a) Pe = 100 and b) Pe = 500. Dashed line denotes corellation proposed by
Scheven et al.178 (equation (1.36)). Error bars for our simulations indicate 95% confidence intervals calculated using
dispersion values of 10 random realizations of each packing with a fixed porosity and packing generation protocol. Error
bars for the data of Scheven et al.178 were digitized from their publication.

agree well with the dispersion coefficients simulated by Augier et al.177 On the other hand, DL/Dm

simulated at Pe = 100 corresponds to the Ωx0.05 packings whileDL/Dm at Pe = 500 to the Ωx0.95
ones. This could not be attributed to one of the possible numerical artefacts of ADE solvers, numer-
ical dispersion (because it increases the dispersion coefficient as Péclet number grows), but can be
explained by the following differences between our simulations and the computational approach of
Augier et al.177: i) monosized spheres contrary to the wide distribution of sphere diameters, ii) truly
periodic packing with corresponding periodic boundary conditions against cut bulk packing with
“symmetric planes” lateral boundary conditions, and iii) low Reynolds number (Re� 1) contrary
to moderate Reynolds number (1 < Re < 100) flow.

Maier et al.123,172 performed simulations of hydrodynamic dispersion in bulk packings gener-
ated with MC algorithm (corresponding dispersion coefficients are shown in Figure 1.11 by black
and magenta crosses). Low Reynolds number flow and mass transport were simulated using LBM
and RWPT approaches. The authors took care to observe close-to-asymptotic time behavior of
the dispersion coefficient, which is free from most of the finite size or numerical artifacts. The
similarity of our and Maier’s packing generation algorithms allows us to perform a comparison
of the dispersion coefficients in the bulk packings with similar microstructures. We note that the
authors reported independence of the dispersion coefficients on the compression rate Ω (see Sub-
section 1.1.2 for the description of MC algorithm) over a wide porosity range of 0.36–0.50. Contrary
to their results, Figure 1.11 demonstrates such a dependence: at low porosities and Pe = 100 dis-
persion coefficients of Ωx0.95 and Ωx0.05 packings have a difference of about 50%. The difference
in the microstructures (and corresponding dispersion coefficients) of our and Maier’s packings
generated with MC algorithm can be explained by the different amount of iterations (N ) before
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compression of the simulation box is applied. In our study N = 5000 while Maier et al.123,172 did
not specify the value of N in their study. To summarize, Figure 1.11 shows an excellent agreement
for the hydrodynamic dispersion coefficients of our Ωx0.95 packings and dispersion data of Maier
et al.123,172

Blue crosses in Figure 1.11a denote NMR data from the work of Scheven et al.178 The NMR
measurements were done in cylindrical columns with the cylinder-to-particle diameter ratio of
∼375 and porosity of 0.367 and 0.374. Measurement time was long enough (τC > 20) to observe
close-to-asymptotic behavior of the dispersion coefficients for the bulk region of the packings. As
can be seen in Figure 1.11a, our simulation results agree very well with the authors data.

In their studies, Scheven et al.178,182 suggested the existence of an intrinsic value of the
dispersion coefficient for the bulk sphere packings. They stated that dispersion in an uncon-
fined sphere packing is defined solely by Péclet number and hydrodynamic radius of a packing
(rh = 1/6 dp ε/(1− ε)), and proposed the following equation (dashed lines in Figure 1.11):

DL

Dm

= Peeff(A ln(Peeff) +B), (1.36)

where Peeff = 6uavrh/Dm = Pe ε/(1− ε), A = 0.12± 0.007, and B = 0.11± 0.03 (in later work182

Scheven suggested A = 0.131± 0.007 and B = 0.07± 0.03 for 10 ≤ Peeff ≤ 2100). According to the
authors, equation (1.36) specifies the lower bound of the dispersion values, and higher dispersion
coefficients, if they are observed, are caused by factors not related to the packing microstructure like
nonuniform flow injection or faster flow near the confining wall. However, our results demonstrate
the existence of bulk sphere packings with dispersion coefficients significantly lower or higher
compared to the predictions of equation (1.36). Figure 1.11 also suggests that any correlation in a
form of Dax/Dm = f(Pe, ε) for the random sphere packings will fail to provide precise results if it
does not take microstructural disorder of the packings into account.

It is interesting to note that Scheven et al.178 confirmed the validity of equation (1.36) by
comparison of the dispersion coefficients calculated using (1.36) with their NMR data, theoretical
predictions of Saffman183,184 (which are based on the capillary model), and simulations of Maier
et al.123 As can be seen in Figure 1.11, Maier’s data are approximately 3/2 times lower that the
predictions of (1.36). Probably, this fact led the authors to assume the hydrodynamic radius rh

of Maier’s packings to be 3/2 times lower than rh of “smoothed” spheres (due to the discrete
representation of the packing spheres on a cubic lattice), and to upscale Maier’s data accordingly.
Maier and Bernard85 in their later study introduced the smooth representation of the sphere surfaces
and found that such a representation results in lower values of the dispersion coefficient, which
contradicts the assumption of Scheven et al.178 It should be noted that uniform microstructure
of MC packings used in the simulations of Maier et al.42,123,180,185 resulted in probably the lowest
dispersion coefficients for bulk sphere packings available in the literature.118,178,186

182 U. M. Scheven. AIChE J., 56: 289–297, 2010.
183 P. G. Saffman. J. Fluid Mech., 6: 321–349, 1959.
184 P. G. Saffman. J. Fluid Mech., 7: 194–208, 1960.
185 R. S. Maier et al. Philos. Trans. R. Soc. A, 360: 497–506, 2002.
186 P. Magnico. Chem. Eng. Sci., 58: 5005–5024, 2003.



1.4 Mass transport simulation 41

Hydrodynamic dispersion in a pillar array with top and bottom walls
As it was mentioned, the comparison of our simulation results with dispersion coefficients mea-
sured experimentally in the random sphere packs is hindered by the lack of the description of the
real packing microstructure. Therefore, on the last validation step we simulated hydrodynamic
dispersion in a system presented by a hexagonal array of cylinders bounded at the top and bottom
by two planes (see Figure 1.12a). We have chosen this system for simulations because of i) the
availability of precise experimental data on the hydrodynamic dispersion coefficients and ii) the
possibility to reproduce the microstructure of the system exactly. The geometry of the system
enables optical visualization of the concentration profiles and corresponding estimation of the hy-
drodynamic dispersion despite the material of the stationary phase (i.e, cylinders) is not optically
transparent.

Different views of the simulation domain are shown in Figures 1.12a,b. The simulation domain
represented by the hexagonal array of cylinders, which are bounded at the top and bottom by two
planes, is an approximation of the ordered micropillar array produced experimentally in the work
of Eghbali et al.187 For the applications of chromatography, micropillar arrays provide an alternative
concept188 to the traditional columns packed with spherical particles. Figure 1.12b provides details
on the studied geometry: parallel cylinders of height b and diameter d are located between two
parallel plates; the axes of the cylinders go through the vertices of the touching equilateral triangles
with the side length a. The corresponding simulation domain has spatial dimensions of

√
3 a (length,

x-direction), a (width, y-direction), and b (height, z-direction). This system was discretized with
a high spatial resolution of n = 200 grid nodes per cylinder diameter to minimize possible finite
size effects. The pressure gradient was applied along the domain resulting in the flow direction
as indicated by the arrows in Figures 1.12a,b, and the mean flow velocity uav corresponded to the
Reynolds number of Re ≈ 0.002 (experimental Reynolds numbers numbers were within the range
of 0.002–0.05).

Time evolution of the hydrodynamic dispersion coefficients simulated at Péclet numbers
Pe = uavd/Dm of 10.3 (dashed lines) and 31.6 (solid lines) in the simulation domain with b = 2.59 d

(see text below) are shown in Figure 1.12c. Figure 1.12c reveals qualitatively different time be-
havior of the dispersion coefficients calculated along three spatial directions. The dispersion coef-
ficient Dz(t)/Dm decays monotonously towards zero value, which is related to the limitation of
z-displacement of the tracers by the top and bottom planes. The decay rate is independent on the
Péclet number due to the presence of only diffusion mixing along the z-direction (the flow field
has zero z-components).

The dispersion coefficient Dy(t)/Dm oscillates at short times (τD < 0.25 here) and converges
to a finite value afterwards. The oscillations are related to the correlation in the motion of tracers
around the cylinders, and oscillations decay is caused by the mixing of the tracers due to molecular
diffusion (consequently, oscillations are more pronounced at high Péclet numbers). The origin
of the initial peak in the development of the transverse dispersion coefficient in random sphere
packs (cf. Figure 5.3) is the same as of the oscillations observed here. However, in random sphere

187 H. Eghbali et al. Anal. Chem., 81: 705–715, 2009.
188 B. He, N. Tait, and F. Regnier. Anal. Chem., 70: 3790–3797, 1998.
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Figure 1.12: a) Side view of the periodic cell of the hexagonal array of cylinders bounded at the top and bottom
by two planes. Shown is the periodic cell with porosity of ε = 0.78. b) Projections of the periodic cell on xz- and
yx-planes; in the figure, d denotes cylinder diameter, a is the width of the periodic cell and the distance between the
axes of nearest cylinders, b is the cylinder height, and

√
3 a is the cell length. c) Time development of longitudinal

(Dx(t)/Dm) and transverse (Dy,z(t)/Dm) dispersion coefficients as a function of the diffusive time τD = 2Dmt/(b/2)2.
d) Close-to-asymptotic values of longitudinal dispersion coefficient expressed in terms of plate height h = 2Dx/(DmPe)
as a function of Péclet number Pe.

packings only one peak is observed because mixing due to molecular diffusion is accelerated by
the macroscopic randomness of the flow paths. The oscillations of the dispersion coefficient were
observed in simulations (for example, see Figure 7 in the study of Acharya et al,76 oscillations in
their work are weakly pronounced probably due to a poorly resolved simulation domain) and
experiments.189

Dispersion coefficient Dx(t)/Dm, shown in Figure 1.12c, grows monotonously and reaches
its close-to-asymptotic value after τD ≈ 1.2. This time translates to the diffusion displacement of
lD =

√
1.2 b/2 ≈ 1.1 b/2. The time to reach close-to-asymptotic behavior is determined by the time

189 P. T. Callaghan and S. L. Codd. Phys. Fluids, 13: 421–427, 2001.
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to cover the longest distance between different (longitudinal) velocities (see Chapters 2 and 5). In
the studied system, maximum velocity of the parabolic-like flow profile in the array void space and
zero velocity at the cylinder–plane contact can be assumed as different velocities located on the
maximal distance (see, for example, Figures 1 and 2 in the work of De Smet et al.190). Due to the
symmetry of the flow profile, the maximal distance between different velocities is roughly equal
to b/2, which agrees very well with lD ≈ 1.1 b/2 estimated from the time behavior of Dx(t)/Dm

above.

In Figure 1.12d we compare close-to-asymptotic values of the dispersion coefficient Dx(t)/Dm,
expressed in the terms of plate height h = 2 (Dx/Dm)/Pe, with experimental values from the work
of Eghbali et al.187 Comparison is performed over the whole Péclet number range (1.0–31.6) of the
available experimental data. In their study,187 the authors describe characteristic dimensions of the
micropillar array as b = 10 µm and d = 4 µm, which translates to the cylinder height-to-diameter
ratio of b/d = 2.5. The result of our simulations performed with b/d = 2.5 (Figure 1.12d, red
dots) demonstrates an underestimation of the experimental data. Eghbali et al.187 commented their
procedure of the fabrication of the micropillar array as “. . . The fabrication of the pillar channels and
the concomitant injection system was performed using the methods described in refs [191–195]. . . ”
We found that fabrication procedures very similar to the work of Eghbali et al.187 were used in
works of Eghbali et al.191 and De Malsche et al.193 In Reference [191] the authors reported the
pillar height as 10 µm; however, according to Figure 2 in [191] (high resolution SEM image of
a micropillar array with the specified length scale), micropillars have the height of 11.5 µm. The
same height of 11.5 µm was reported in Reference [193]. Therefore, we performed an additional
set of simulations for b/d = 11.5/4 ≈ 2.88 (black dots in Figure 1.12d) which demonstrated better
agreement with experimental data.

High resolution SEM image of pillars in Reference [191] (Figure 2) reveals indentations on
the pillar walls originating from the preparation process, which could result in a dispersion increase
compared to the pillars with flat walls assumed before. In an attempt to find even better agreement
with the experimental data of Eghbali et al,187 we reproduced irregularities of the pillar walls and
the average pillar diameter (≈ 4.44 µm; b/d ≈ 2.59) from the SEM image in [191] with a resolution
of 502 pixels per pillar height and 193.5 pixels per average pillar diameter. Note, we do not perform
a direct comparison with the experimental data on dispersion available in Reference [191] due
to their large scatter. As can be seen in Figure 1.12d (green crosses), the shape and the average
diameter of the pillars extracted from the SEM image resulted in the dispersion values very close to
our previous simulations with b/d = 2.88. The maximal (average) difference between dispersion
values of Eghbali et al,187 and our simulations in the system with reconstructed geometry is 5%

(1%) for Pe < 20 and 12% (10%) for higher Péclet numbers. The quite significant difference
for Pe > 20 (Figure 1.12d) can be attributed to the anomalous shift of experimental data for

190 J. De Smet et al. J. Chromatogr. A, 1154: 189–197, 2007.
191 H. Eghbali et al. J. Sep. Sci., 30: 2605–2613, 2007.
192 H. Eghbali et al. LC-GC Eur., 20: 208–222, 2007.
193 W. De Malsche et al. Anal. Chem., 79: 5915–5926, 2007.
194 W. De Malsche et al. Lab Chip, 7: 1705–1711, 2007.
195 M. De Pra et al. Anal. Chem., 78: 6519–6525, 2006.
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20 < Pe < 31.6. Taking into account this shift and also some uncertainty in the spatial dimensions
of the experimental system, we conclude that our model demonstrates excellent agreement with
the experimental data when the microstructural disorder of the geometry of interest is known.

1.5 Program implementation
As it was mentioned before, our simulation approach includes the following sequential steps:

• generation of the random packing of solid impermeable spheres using Jodrey–Tory or Monte
Carlo algorithms (Section 1.1),
• spatial discretization of the generated packing (Section 1.2),
• simulation of the fluid flow in the void space of the generated packing using the lattice

Boltzmann method (LBM, Section 1.3),
• simulation of advective–diffusive transport in the packing void space with the random walk

particle tracking method (RWPT) using the fluid velocity filed obtained on the previous
simulation step (Section 1.4).

Most of the computational time (> 99%) is spent during simulations with LBM and RWPT methods,
and in this subsection we describe some aspects of our program implementation and performance
of these two methods methods.

The majority of the simulations in this thesis were performed on the Blue Gene/P196,197 system,
hence information given in this subsection is mostly related to our experience with this system.
Blue Gene/P is a system equipped with a large amount of low-power PowerPC 450 chips. A
chip has four processor cores operating at a clock speed of 850 MHz and delivering a theoretical
performance of 3.4 GFLOP/s per core (here FLOP is an acronym for FLoating point OPeration). Each
chip is soldered to a small card together with a random access memory (RAM) of 2 GB (memory
bandwidth is 13.6 GB/s per chip or 3.4 GB/s per core), forming a compute card. 32 compute cards
are plugged in a node card. 32 node cards form a rack with 4096 processor cores and 2 TB of
RAM. Chips within a rack and racks are interconnected with several networks including a three-
dimensional torus network for point-to-point and collective communications.

To date (2010) the largest Blue Gene/P system is installed at Forschungszentrum Jülich
(FZJ), has 72 racks or 294 912 processor cores (which is the world-largest amount of cores in one
system), and a peak performance of 1 PFLOP/s. The size of the studied problems and computational
approach used in this study allowed us to effectively utilize the whole Blue Gene/P system at FZJ.198

Lattice Boltzmann method
Iterative calculation of the distribution functions fα according to equation (1.21) forms the basis
for the program implementation of LBM. Equation (1.21) can be formally split into “collision” and

196 C. Sosa and B. Knudson. IBM system Blue Gene solution: Blue Gene/P application development. 4th ed. IBM,
International Technical Support Organization, 2009.

197 B. R. de Supinski et al. Int. J. High Perform. Comput. Appl., 22: 33–51, 2008.
198 S. Khirevich, A. Daneyko, and U. Tallarek. “Simulation of fluid flow and mass transport at extreme scale” in: Jülich

Blue Gene/P Extreme Scaling Workshop 2010 ed. by B. Mohr and W. Frings. Forschungszentrum Jülich, Jülich
Supercomputing Centre, 2010.
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“propagation” steps:

collision: f∗α(~x, t) = fα(~x, t)− ∆t

τ
(fα(~x, t)− f eq

α (~x, t)) , (1.37a)

propagation: fα(~x+ ~eα∆t, t+ ∆t) = f∗α(~x, t). (1.37b)

From the program point of view, the former step is computationally intensive (about 200 floating
point operations per node update) and requires data from a single lattice node only, while the
latter step is a copy of data from one memory location (a node) to another (node neighbors). Four
dimensional array Nx×Ny×Nz×19 (where Nx,y,z are the lattice dimensions and 19 is the amount
of lattice links in the D3Q19 model) containing the lattice links is stored in a continuous block
of computer memory, and selection of the data layout of this four dimensional array can greatly
affect the program performance.199 We used lxyz layout, i.e. 19 links of the lattice node (x, y, z) are
stored continuously in memory, followed by 19 links of the next node (x + 1, y, z) and so on. The
size of z dimension was selected to be smaller than the sizes of y and z dimensions.

The performance of LBM is assumed to be limited by the memory bandwidth.199 Computation-
ally, PowerPC 450 processor core can deliver a theoretical performance of 3.4 · 109/200 = 17 · 106 =

17 MLUP/s (here 200 is the FLOP amount and LUP is an acronym for Lattice node UPdate). To
update a lattice node, 19 · 4 bytes (here 19 is the amount of lattice links and 4 is the size of
float variable) must be loaded and then stored from/to the RAM. On modern CPUs (also on Pow-
erPC 450) data is fetched from RAM by the groups of bytes called cache lines.200 PowerPC 450 has a
cache line size of 128 bytes196 resulting in 128 bytes to be read to load continuously stored 76 bytes
containing information on 19 lattice links. After the collision step is performed, 19 updated links
have to be stored in different locations in memory, and in the worst case scenario 19 · 128 = 2432

bytes must be transferred to the memory. Hence, the performance of LBM is limited by the memory
bandwidth as 3.4 · 109/((1 + 19) · 128) ≈ 1.33 MLUP/s. Our program implementation of LBM, writ-
ten in C programming language201,202 and compiled with IBM xlC compiler had a performance of
0.6–1.1 MLUP/s depending on the system geometrical parameters (like the shape of the simulation
domain and average porosity), which agrees well with the performance results reported in the
literature.203

Parallel implementation of the LBM code was done using the Message Passing Interface204

(MPI) which is de facto standard for the communication between the computational nodes of the
distributed memory systems (like Blue Gene/P). Simulations in this thesis are mainly concerned
with “long” computational domains, i.e. one dimension of the domain is significantly larger than
two others. Therefore it is straightforward to use one-dimensional domain decomposition: the

199 G. Wellein et al. Comput. Fluids, 35: 910–919, 2006.
200 J. Handy. The cache memory book. 2nd ed. Academic Press, 1998.
201 B. W. Kernighan and D. M. Ritchie. C programming language. 2nd ed. Prentice Hall, 1988.
202 ISO/IEC 9899:1999: Programming languages — C. International Organization for Standardization, 1999.
203 J. Götz et al. “Direct numerical simulation of particulate flows on 294 912 processor cores” in: ACM/IEEE

International Conference for High Performance Computing, Networking, Storage and Analysis. Los Alamitos, CA, USA,
2010.

204 MPI: A Message-Passing Interface Standard, Version 2.2. Message Passing Interface Forum, 2009.
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computational domain is split into “slices” which are distributed among MPI processes. Because
an update of each lattice node requires information from its neighbors, each slice is then extended
by two “ghost layers,” from left and right of the slice. During the execution of the propagation step
a memory buffer corresponding to the ghost layer is updated, and after the step is complete, each
MPI process performs MPI_Sendrecv() operation to send and receive contents of the ghost layers
of the neighboring processes.

Random walk particle tracking method
RWPT iteratively displaces infinitely small particles (tracers) according to equation (1.32) using
normally distributed random numbers and a flow field calculated by the LBM. RWPT requires
small amount of computations (compared to LBM) and its performance is mainly limited by i) the
time to access memory elements containing information on the velocity field, which is needed to
calculate the advective displacement of a tracer, ii) generation of the normally distributed random
numbers to calculate the diffusive displacement of a tracer, and iii) float-to-integer truncation (i.e.,
rounding of a floating point number towards zero) required to calculate coordinates of the lattice
voxel where the tracer is currently located. Further we give a short overview of our approach to
speed up the aforementioned performance-limiting factors.

The maximal tracer displacement is limited approximately to one lattice space step h. Hence,
the use of the slice decomposition (as in the LBM implementation) with one ghost layer results
in the communication between MPI processes on every RWPT iteration. Extension of the ghost
layer length (in lattice nodes) allowed us to increase the amount i of RWPT iterations between
two subsequent MPI communications. Moreover, this extension enabled continuous displacement
of each tracer during multiple iterations i increasing locality of the memory access and RWPT
performance.

Generation of the normally distributed random numbers was performed using highly opti-
mized routines from the IBM ESSL library,205 and resulted in a performance gain of up to 20 times
compared to our C-implementation of the random generator.

Despite its apparent simplicity, float-to-integer truncation can greatly slow down the perfor-
mance of the code execution. Modern processor architectures use pipeline technique to process
instructions, and maximum performance is achieved when all stages of the pipeline are filled
with instructions which can be processed simultaneously.206 In some situations, dependencies be-
tween instructions or instructions by itself may cause pipeline flush and, therefore, performance
degradation.207 Assembly instructions frsp208 and bl, which were part of our default float-to-integer
conversion implementation, would cause pipeline flushing: an optimized implementation (i.e.,
without frsp and bl) resulted in approximately twofold performance increase of the overall RWPT
performance.

205 Engineering and Scientific Subroutine Library for Linux on POWER, Version 4 Release 2.2. 4th ed. IBM Corporation,
2005.

206 R. Hyde. Write great code, volume 1: Understanding the machine. No Starch Press, 2004.
207 R. Hyde. Write great code, volume 2: Thinking low-level, writing high-level. No Starch Press, 2006.
208 S. Weiss and A. Goldstein. J. Syst. Archit., 45: 15–29, 1998.
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LBM and RWPT parallel performance
Figure 1.13a shows results on the performance scaling benchmarks198 performed on JUGENE
system (Blue Gene/P installed at Forschungszentrum Jülich) for a cylindrical sphere packing with
diameter of ∼ 21 dp and length of 9830.4 dp (where dp is the sphere diameter). The packing was
discretized (see Section 1.2) with a spatial resolution of 30 lattice nodes per sphere diameter
resulting in the lattice dimension of 632 × 632 × 294 912 lattice nodes. Such a lattice dimension
required 12 TB for LBM and 6 TB for RWPT programs. Due to the memory limitations, we selected
the performance at 32k and 16k processor cores (8 and 4 Blue Gene/P racks, respectively) as the
baseline for LBM and RWPT, respectively. Both LBM and RWPT demonstrate an identical strong
scaling behavior (Figure 1.13a), which is related to the similar decomposition techniques used in
both of the methods and, consequently, similar distribution of fluid nodes (nfl) among processor
cores. In case of LBM, nfl defines the number of lattice links to be processed while for RWPT
nfl specifies the number of tracer particles associated with a given processor (assuming uniform
concentration of tracer particles in the fluid phase of the packing). Non-uniformity of nfl distribution
among processors leads to workload imbalance, caused by two factors:

• The smallest indivisible data chunk for the implemented decomposition procedure and a
given problem size is a two dimensional layer with dimensions of 632× 632× 1 lattice nodes.
The whole simulation domain consists of Lz = 294 912 silces, which may or may not be evenly
divisible by the number of allocated processor cores n. The remainder of the Lz/n slices, if
present, is distributed among some of the processes, which yields a non-uniform distribution
of nfl.

• Non-uniform distribution of nfl on the lattice is an inherent property of the random porous
media model (for the packing used in simulations, the ratio between maximal nfl,max and
minimal nfl,min numbers of fluid nodes per lattice layer is 1.27).

Depending on whether Lz is a multiple of the current processor number n or not, only the second
or both factors cause workload imbalance. More efficient scaling of RWPT can be explained by
the larger ratio of computation (CPU time spent out of communication) to communication times
compared to LBM.

Input/output operations
After the LBM has performed the calculation of the flow field, the simulated velocity field must
be written into a file, and later this file must be read into the memory by the RWPT program.
Operations of reading/writing of the file to the file system are often referred to as input/ouput
operations (I/O). Time requirements to perform I/O can become prohibitive with the growth of the
size of the simulation domain. For example, an optimized single-core I/O on Blue Gene/P results
in a performance of 100 MB/s; our last simulations were performed for systems with a velocity
field file size of ∼ 2.5 TB. The time needed to calculate the velocity field was about 40 minutes
and single-core I/O would take about 7.5 hours to write such a file. A possible solution is to use
MPI I/O routines which allow to execute parallel I/O operations.204 However, a system setup on
supercomputers we used in earlier runs had a flag MP_SINGLE_THREAD set to yes disabling MPI I/O.209

209 Parallel Environment for AIX and Linux: MPI Subroutine Reference. IBM Corporation, 2010.
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Figure 1.13: a) Performance scaling on the JUGENE system. The upper number in each pair indicates the ratio of the
longitudinal dimensions of the longest to the shortest decomposed subdomains. The lower number is the fraction of the
processes with the longest domain length. b) I/O performance of LBM (file write) and RWPT (file read).

Hence we implemented our own routines to speed up the I/O. The idea was to perform parallel
writing in groups of p processes, where p is greater than unity (to increase I/O performance) and
less than the total amount n of the allocated processes (to avoid overload or even crash of the file
system, when n is on the order of thousands).

Our programm implementation allowed us to reach ∼ 1 GB/s of I/O performance for both
reading and writing on the 8192 processor cores (2 Blue Gene/P racks with GPFS file system210,211

installed at Rechenzentrum Garching, Germany). On the JUGENE system (Blue Gene/P with GPFS)
our I/O implementation demonstrated a good performance for the file reading (see Figure 1.13b,
blue circles; file size is 1.3 TB). File writing on JUGENE using our I/O approach and MPI I/O
implementation showed similar behavior: maximum performance was about 2 GB/s on 32 768 cores
(8 racks) and further increase of the allocated processor cores led to I/O performance degradation
(Figure 1.13b, red squares). File writing performance was greatly improved by the utilization of
the SIONlib library212 available on JUGENE (Figure 1.13b, green squares). However, the default
use of SIONlib resulted in only half of the performance indicated in Figure 1.13b; maximum
performance was achieved with allocation of the disk space (for example, using dd if=/dev/zero

of=velocity.file unix command) for the file to be written by LBM before the LBM program run.

210 S. Fadden. An Introduction to GPFS Version 3.3. IBM Corporation, 2010.
211 J. Borrill et al. Parallel Comput., 35: 358–373, 2009.
212 W. Frings, F. Wolf, and V. Petkov. “Scalable massively parallel I/O to task-local files” in: Proceedings of the

Conference on High Performance Computing Networking, Storage and Analysis. New York, NY, USA, 2009.



Chapter 2

Packings of basic cross sections

In this chapter, the hydrodynamic dispersion in packings of different porosities and different cross
sections (circular, quadratic, rectangular, and semicircular) is discussed. The obtained results were
published in the journal Analytical Chemistry in 2007.213

2.1 Introduction
With the advent of the “-omics” era in the life sciences, there has been an ongoing pursuit for
miniaturized and integrated analysis systems.214 The comprehensive analysis of whole biological
systems as well as large-scale screening projects in medicine and the pharmaceutical industry
relies on the analysis of a huge number of complex samples available only in minute quantities.
The answers to this problem are miniaturization, integration, parallelization, and automation.
The current microfabrication techniques and materials enable integrated and highly multiplexed
systems in chip format, along with the possibility of batch production to provide cost-effective,
disposable devices for highthroughput operation.215,216 Micro total analysis systems, which ideally
integrate a complete analytical process in a microfluidic chip — from sample preparation and
injection via analyte separation to the final identification and characterization of the components —
are particularly attractive tools for applications in the life sciences and medical diagnostics.217–221

While LC–MS/MS (liquid chromatography–tandem mass spectrometry) is the standard ana-
lytical technique in proteomics and many other research areas, the development of microchip-LC
systems has not enjoyed the success of electrokinetically based separation techniques. Voltage-
controlled processes are relatively easily implemented in microfluidic platforms, whereas the in-
tegration of pressure-driven flow, especially high-pressure operation required for true HPLC, is
challenging. Specific problems of microchip-HPLC development are as follows: i) integration of
high-pressure pumps, ii) formation of solvent gradients with short cycle times, iii) integration
of high-pressure sample injection, iv) fabrication of high-pressure-rating channels, v) microchip

213 S. Khirevich et al. Anal. Chem., 79: 9340–9349, 2007.
214 N. Lion et al. Electrophoresis, 24: 3533–3562, 2003.
215 M. J. Madou. Fundamentals of microfabrication: the science of miniaturization. 2nd ed. CRC Press, 2002.
216 O. Geschke, H. Klank, and P. Tellemann. Microsystem engineering of lab-on-a-chip devices. John Wiley & Sons, 2004.
217 S. C. Jakeway, A. J. de Mello, and E. L. Russell. Fresenius’ J. Anal. Chem., 366: 525–539, 2000.
218 D. R. Reyes et al. Anal. Chem., 74: 2623–2636, 2002.
219 P.-A. Auroux et al. Anal. Chem., 74: 2637–2652, 2002.
220 T. Vilkner, D. Janasek, and A. Manz. Anal. Chem., 76: 3373–3386, 2004.
221 P. S. Dittrich, K. Tachikawa, and A. Manz. Anal. Chem., 78: 3887–3908, 2006.
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column packing, and vi) world-to-chip interfacing. The extent of integration of the current LC-
microchips varies considerably. Fully integrated, so-called “stand-alone,” LC-microchips were re-
cently introduced,222,223 but the majority of LC-microchips are semi-integrated devices; i.e., only
some of the system components (with the separation column(s) as key element) are seemlessly
integrated on a microchip that is interfaced to desktop equipment.5,9,10,12,224–230 For specific applica-
tions, microchip-LC systems have demonstrated results comparable or even superior to benchtop
instrumentation, but their range of operation modes and general performance is still limited. For
specific applications, microchip-LC systems have demonstrated results comparable or even superior
to benchtop instrumentation, but their range of operation modes and general performance is still
limited.

With the research focus on integration and multipexing, little attention has been given to the
performance of the microchip separation columns. Microfluidic channels have been fabricated in
silicon, glass, quartz, diamond, and a variety of polymeric materials. The channel geometry is mainly
determined by the fabrication methods used and is inherently noncylindrical. The cross sections
of LC-microchip separation columns include semicircular, quadratic, rectangular, trapezoidal, and
elliptical geometries, often with irregularly angled corners and curved sides. Solid supports used in
microfluidic analytical systems include beads, membranes, fabricated silicon microstructures, gels,
and monoliths.231 The separation columns of more recent LC-microchips5,9,10,12,222–225,227–230 contain
either porous monoliths232 or slurry-packed particulate beds.233 The former have the advantage
of easy fabrication by polymerization of the monolithic column directly in microfluidic channels,
while the latter are desirable because the wide variety of available chromatographic media and the
knowledge gained from conventional HPLC could be utilized. Particle-packed microchip columns
have a low channel-to-particle size ratio, as the reduction of column dimensions is not accompanied
by a corresponding reduction in the particle diameter. Microchip column packing is not a firmly
established procedure but still retains an experimental character. The microchannels are filled
manually with a syringe or with the help of pumps at low to moderate pressure. Microchip columns,
fittings, and packaging can usually not tolerate the high packing pressures used in conventional
column packing, and the application of ultrasonication that is often crucial to achieve good packing
structure can be detrimental to the microfluidic devices. It is therefore to be expected that bed

222 J. Xie et al. Anal. Chem., 77: 6947–6953, 2005.
223 I. M. Lazar, P. Trisiripisal, and H. A. Sarvaiya. Anal. Chem., 78: 5513–5524, 2006.

5 H. Yin et al. Anal. Chem., 77: 527–533, 2005.
9 K. W. Ro, J. Liu, and D. R. Knapp. J. Chromatogr. A, 1111: 40–47, 2006.

10 D. S. Reichmuth, T. J. Shepodd, and B. J. Kirby. Anal. Chem., 77: 2997–3000, 2005.
12 C.-Y. Shih et al. J. Chromatogr. A, 1111: 272–278, 2006.

224 J. Carlier et al. J. Chromatogr. A, 1071: 213–222, 2005.
225 Y. Yang et al. Lab Chip, 5: 869–876, 2005.
226 M.-H. Fortier et al. Anal. Chem., 77: 1631–1640, 2005.
227 A. Ishida et al. J. Chromatogr. A, 1132: 90–98, 2006.
228 D. A. Mair et al. Lab Chip, 6: 1346–1354, 2006.
229 J. Liu et al. Int. J. Mass Spectrom., 259: 65–72, 2007.
230 Nanostream. Brio Cartridges.
231 D. S. Peterson. Lab Chip, 5: 132–139, 2005.
232 K. W. Ro, R. Nayak, and D. R. Knapp. Electrophoresis, 27: 3547–3558, 2006.
233 G. Ocvirk et al. Anal. Methods Instrum., 2: 74–82, 1995.
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porosities of microchip separation columns are higher than those of their conventional counterparts,
cylindrical nanobore HPLC columns.

The analysis of dispersion in confined cylindrical packings at low column-to-particle diameter
ratio is a topic with a long tradition in the chemical engineering literature.166 It is generally accepted
that the asymptotic axial dispersion coefficient under these conditions depends on the flow maldis-
tribution due to a geometrical wall effect characterized by damped oscillations of the interparticle
porosity, which exist over a few particle diameters from the cylinder inner surface toward the bulk
of the packing.234–237 These oscillations are influenced by the size distribution and shape of the
particles and are most pronounced in packings of uniform spheres. The geometrical wall effect
is a direct result of the inability of the particles to form a close packing against the flat and hard
surface of the column wall. This effect in the immediate vicinity of the column wall is distinct from
a second and more extended wall effect caused by friction between the bed and the column wall.
Compared to the geometrical wall effect, the latter is traditionally discussed in chromatography
in connection with relatively large column-to-particle diameter ratios.238 Although a systematic
dependence of axial dispersion in confined cylindrical packings on the column-to-particle diameter
ratio is still controversially discussed,180,239–241 the geometrical wall effect becomes important again
for the fabrication of cylindrical nanobore and also noncylindrical microchip HPLC columns. In
addition, axial dispersion in noncylindrical packed beds is expected to be affected by the corners
of the various conduit geometries, which are absent in the classical cylinder format.

The influence of the conduit geometry on the chromatographic performance of packed beds
has rarely been addressed,14 whereas velocity distributions and hydrodynamic dispersion in open
(micro)channels have been extensively investigated for various cross-sectional geometries, mostly
by numerical analysis methods.150,242–245 The results from these studies have limited implication for
the situation in packed beds, where the packing microstructure determines time and length scales
governing flow and dispersion. In this work, we utilize quantitative numerical analysis to resolve
the velocity field and axial hydrodynamic dispersion in pressure-driven flow through fixed beds of
solid (impermeable), spherical particles in conduits with four different container geometries and
analyze the impact of inherent channel corners and cross-sectional symmetry on flow heterogeneity
and resulting dispersion in dependence of the bed porosity.

166 J. M. P. Q. Delgado. Heat Mass Transfer, 42: 279–310, 2006.
234 A. J. Sederman, P. Alexander, and L. F. Gladden. Powder Technol., 117: 255–269, 2001.
235 A. de Klerk. AIChE J., 49: 2022–2029, 2003.
236 D. Tang et al. Chem. Eng. Technol., 27: 866–873, 2004.
237 J. Theuerkauf, P. Witt, and D. Schwesig. Powder Technol., 165: 92–99, 2006.
238 R. A. Shalliker, B. S. Broyles, and G. Guiochon. J. Chromatogr. A, 888: 1–12, 2000.
180 R. S. Maier, D. M. Kroll, and H. T. Davis. AIChE J., 53: 527–530, 2007.
239 R. T. Kennedy and J. W. Jorgenson. Anal. Chem., 61: 1128–1135, 1989.
240 S. Hsieh and J. W. Jorgenson. Anal. Chem., 68: 1212–1217, 1996.
241 S. Eeltink et al. J. Chromatogr. A, 1044: 311–316, 2004.
14 G. P. Rozing et al. J. Sep. Sci., 27: 1391–1401, 2004.

150 D. Dutta, A. Ramachandran, and D. T. Leighton. Microfluid. Nanofluid., 2: 275–290, 2006.
242 H. Poppe. J. Chromatogr. A, 948: 3–17, 2002.
243 A. Ajdari, N. Bontoux, and H. A. Stone. Anal. Chem., 78: 387–392, 2006.
244 N. Bontoux et al. Lab Chip, 6: 930–935, 2006.
245 H. Eghbali and G. Desmet. J. Sep. Sci., 30: 1377–1397, 2007.
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2.2 Numerical section
The analysis of hydrodynamic dispersion in channels containing fixed beds of nonporous spher-
ical particles of uniform diameter involved three distinct stages: i) the generation of confined
sphere packings in various geometries, ii) simulation of interparticle fluid flow, and iii) model-
ing of advective–diffusive solute transport. A parallel collective-rearrangement algorithm was
used to generate the packings, while a lattice-Boltzmann (LB) algorithm served to calculate
the velocity field for single-phase, isothermal, low-Mach number flows in the pore spaces of the
packings. A regular grid (or lattice) is superimposed on the fixed beds, and fluid flow is simu-
lated using only the grid cells in the interparticle pore space. Solute transport was approached
by a random walk particle tracking method modeling the motion of an inert tracer in the LB-
generated velocity field. No assumptions about transport coefficients or average properties of
the fixed beds are required, except for the coefficients of solvent kinematic viscosity and solute
molecular diffusion.

Using the Jodrey–Tory algorithm (see Section 1.1), a collection of sphere packings with fixed
bed porosities (average interparticle void volume fractions) in the range of 0.40 ≤ ε ≤ 0.50 was re-
alized for containers with four different cross-sectional geometries: circular, quadratic, rectangular,
and semicircular (Table 2.1). The cross-sectional area of all packings was kept constant at a value
of 25 πd2

p. Periodic boundary conditions were used along the z-axis (axial dimension and direction
of macroscopic flow) in all packings. The length of the packings was 300 dp for containers with
circular, quadratic, or rectangular cross section, and 500 dp for semicircular containers, sufficient
to eliminate possible recorrelation effects, which could lead to an overestimation of the dispersion
coefficient.123

Table 2.1: Characteristic data of the confined sphere packings.

circular quadratic rectangular semicircular
area of cross section, d2p Ac = Aq = Ar = As = 25π

axial dimension, dp Lc = Lq = Lr = 300 Ls = 500

perimeter length, dp 31.42 35.45 36.18 36.36

volume/surface ratio of container, dp 0.796 0.705 0.691 0.688

lateral dimension, diameter, edge length, edge lengths ar/br = 1.5, radius,
in dp dc = 10 aq = 8.86 ar = 10.85, br = 7.24 rs = 7.07

characteristic transverse length, dp dc/2 = 5 aq/
√

2 ≈ 6.27
√

13ar/6 ≈ 6.52 rs
√

2 = 10

bed porosity 0.40 ≤ ε ≤ 0.50 ε = 0.42, 0.48

The packings were discretized (Section 1.2) using a uniform grid with a spatial resolution of
30 lattice nodes per sphere diameter, resulting, for example, for the cylindrical packings in a lattice
of 300 × 300 × 9000 points in the x, y, and z directions, respectively. Fluid flow in a discretized
packing was simulated by the means of Lattice-Boltzmann method (Section 1.3), employing the
no-slip boundary condition at the solid–liquid interface. To define the hydrodynamic dispersion

123 R. S. Maier et al. Phys. Fluids, 12: 2065–2079, 2000.
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coefficient, N = 106 tracer particles were randomly distributed in the whole interparticle pore
space of a sphere packing and advective–diffusive mass transport was simulated with the random
walk particle tracking approach (see Section 1.4).

With the numerical approach used in this work, it is possible to obtain complete information
on the three-dimensional velocity field and address quantitatively structure–transport relations for
pressure driven flow through sphere packings confined by a container of arbitrary shape. It includes
the detailed analysis of time and length scales underlying transient dispersion, or the dependence
of asymptotic dispersion on bed porosity and the average velocity through a packing. All simula-
tions were run on a Hewlett-Packard Superdome at the Otto-von-Guericke-Universität Magdeburg.
Calculations typically took 48 h for one velocity field and another 36 h for one dispersion coefficient
using 64 processors.

2.3 Results and discussion
For our investigation on the influence of the conduit geometry on the flow velocity field and
hydrodynamic dispersion in fixed beds of spherical, nonporous particles, we selected four basic
cross-sectional geometries: circular (c), quadratic (q), rectangular (r), and semicircular (s). In
miniaturized separation systems employing particulate beds, e.g., nano-HPLC, typical column in-
ner diameters and particle diameters are 75 and 5 µm, respectively, i.e., column-to-particle diameter
ratios of 10–20 are prevalent. A diameter of dc = 10 dp was chosen for the cylindrical column as
a representative value that would also allow the numerical simulations to be carried out with
reasonable computational efforts. For the quantitative comparison between cylindrical and non-
cylindrical packings, the lateral dimensions of the noncylindrical conduits were chosen to yield
the same cross-sectional area as the cylindrical column, i.e., A = 25 πd2

p. An aspect ratio (channel
width to channel depth) of 1.5 was used for the rectangular cross section (Table 2.1). Fixed beds
with average porosities of 0.40 ≤ ε ≤ 0.50 were generated. The lower limit of ε = 0.40 reflects a
relatively dense packing for the investigated low channel-to-particle size ratios. The upper limit
was chosen because packings with ε > 0.50 become too dilute, heterogeneous, and unstable in
practice. Thus, the chosen range of 0.40 ≤ ε ≤ 0.50 appears to be the most relevant for investigat-
ing structure–transport relations in packed microchannels in order to optimize the hydrodynamics
for improved HPLC performance. Sphere packings with seven different bed porosities (from 0.40 to
0.50 in step of 0.02, and 0.43) were generated for columns with circular or quadratic cross section
(main set of geometries), while for the columns with rectangular or semicircular cross section
(additional set of geometries), two representative porosities were selected, ε = 0.42 and ε = 0.48,
one near each end of the investigated range of porosities (Table 2.1).

2.3.1 Porosity distributions
Figure 2.1 shows the front view of the generated packings for two selected porosities (top row
in Figure 2.1a (ε = 0.42) and Figure 2.1b (ε = 0.48)) as well as a side view of a packing with
quadratic cross section (Figure 2.1c). All packings have axial dimensions of L ≥ 300 dp, which
is demanding in terms of computational resources, but ensures the elimination of recorrelation
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c)

a)

b)

Figure 2.1: Fixed beds (confined sphere packings) simulated for containers with four different cross-sectional geome-
tries: circular, quadratic, rectangular, and semicircular. Packings with two different bed porosities were generated for
each container geometry: ε = 0.42 (a) and ε = 0.48 (b). Shown are the front of the generated packings (top rows in a
and b) and projections of all particle centers in a packing onto the front plane (bottom rows). (c) depicts a side view
of a packing with quadratic cross section. All packings have an identical cross-sectional area. Characteristic data of the
sphere packings are given in Table 2.1.

effects that originate in the repeated experience of macroscopic flow features by tracer particles
traversing the length of the packing more than once.123 The porosity distribution in the generated
packings is reflected in the bottom rows of Figure 2.1a and Figure 2.1b, which display projections
of all particle centers in a packing onto the front plane. It is evident from these projections that
particles are generally highly ordered in the near-wall region. The particle centers of the first
layer next to the container wall form a sharply defined line in all packing projections shown. But
the effect of ordering with regard to both, intensity and extension, is visibly less pronounced in
packings of higher bed porosity (ε = 0.48). The porosity differences cannot be discerned visually in
the pictures showing the complete sphere packings (top rows in Figure 2.1a and Figure 2.1b). This
implies that a simple optical inspection, e.g., of a sliced packing, is insufficient to provide reliable
information on the packing density, particularly in the critical wall region.

The porosity distribution in the packings is analyzed in more detail in Figure 2.2 for circu-
lar and quadratic cross-sectional geometries. The lateral porosity distribution of a packing was
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Figure 2.2: Distribution of the local porosity (or interparticle void fraction) for sphere packings in containers with
quadratic cross section (left) and in cylindrical containers (right), with bed porosities of ε = 0.42 and ε = 0.48. Porosity
distributions were calculated along the indicated arrows over the whole length of the packings, covering two of the
corners in the quadratic geometry (diagonal profile).

calculated by recording the interparticle void fraction along the indicated arrow over the whole
length of a packing. Significant fluctuations of local porosity are present over a distance of 2–3 dp

from the wall for both conduit geometries. The arrow along which the porosities were taken in
the packings with quadratic cross section is longer than the diameter of the cylindrical packings
(Table 2.1), which accounts for the observed difference in damping range. As expected, the fluc-
tuations of porosity are for both geometries more pronounced in packings with lower average
porosity (ε = 0.42), because the particles have to fill the available space more densely. The main
difference between the cylindrical and noncylindrical packings here lies in the amplitudes of the
observed porosity fluctuations, which are decidedly larger for the quadratic cross section, and in
the porosity distribution in the near-wall region, i.e., within a distance of one dp from the container
wall. Figure 2.3 shows the enlarged near-wall region of Figure 2.2. In comparison to the cylindrical
packings, the first minimums in the porosity distribution functions of the packings with quadratic
cross section are shifted by ∼0.3 dp to positions further inside the packing, which means that the
exclusion volume (i.e., a region where no particle centers are found) adjacent to the wall is larger
in the noncyclindrical packings. While the porosity distribution functions of the cylindrical pack-
ings start with an instant decline from the high porosity at the wall, there is a region of maximum
porosity extended over nearly 0.2 dp for the packings with the quadratic cross section.

The observed differences in the porosity distribution functions between packings with circular
and quadratic cross section are the consequence of the reduced symmetry of a square compared to
a circle. The presence of corners places geometric restrictions upon the particle positions. Particles
occupying positions near the corners (“near-angle particles”) have a semifixed position due to
the constrictions of the 90◦-angled corners. It may be imagined that a packing is generated by
layering slices of particle-packed cross sections of one dp thickness (“monolayers”) up to the
desired packing length. The relative orientation of these layers is restricted in the case of quadratic
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Figure 2.3: Comparison of the interparticle void fraction distribution in the near-wall region between packings with
circular and quadratic cross section at the two selected bed porosities (from Figure 2.2). Noticeable is an extended
region of maximum porosity on the order 0.2 dp in the corner of the packings with quadratic cross section. These regions
translate to channels of advanced flow velocity as shown in Figure 2.4

cross sections because the number of corner positions is limited and so are the possible positions of
near-angle particles. Because of the limited possibilities of orientation of the layers to each other,
the distribution of particle positions is more uniform in packings with quadratic cross section; i.e.,
the maximums and minimums of the periodic porosity distribution function are more pronounced
than in cylindrical packings. The effect of the container corners on the packing porosity can also
be seen by revisiting the particle projections in Figure 2.1a (ε = 0.42). All noncylindrical packings
display distinct porosity oscillations near the corners within a distance of 3 dp from the wall, while
toward the packing center, the particle distributions are more random. The regions of high porosity
in and near the corners of the noncylindrical packings are expected to become channels of advanced
velocity in pressure-driven flow.

2.3.2 Fluid flow fields
Figure 2.4 shows velocity profiles calculated for all packing geometries and the two selected
bed porosities at a reduced velocity or Péclet number Pe = v̄dp/Dm (where v̄ is the average
velocity through the packings and Dm is the bulk molecular diffusion coefficient) of Pe = 10.
These profiles correlate well with the particle center projections of Figure 2.1 and the porosity
distribution functions of Figure 2.2. Regions of higher and lower than average velocity match
the maximums and minimums, respectively, of the porosity distribution functions. As anticipated,
regions of advanced velocity appear in the corners of the noncylindrical packings. A comparison
between packings of higher and lower bed porosity reveals two facts: first, a higher bed porosity
translates to a more pronounced flow heterogeneity between the near-wall region and the inner
region of a packing for all cross-sectional geometries. Second, the impact of a higher bed porosity
on the flow heterogeneity is much larger for noncylindrical packings, because the corner channels
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Figure 2.4: Velocity profiles for packings with the four different cross-sectional geometries at two selected bed porosities,
ε = 0.42 (top row) and ε = 0.48 (center row). The reduced velocity or Péclet number Pe = v̄dp/Dm (where v̄ is the
average velocity through the packings and Dm the bulk molecular diffusion coefficient) is Pe = 10. The schematic
(bottom row) illustrates the characteristic transverse length for each velocity field (conduit geometry). It corresponds to
the distance that needs to be covered in order to realize a complete exchange (equilibration) between different velocities
(see also bottom row in Table 2.1).

of advanced fluid flow are not only more extended but the velocity in these channels is also higher
than in packings of lower bed porosity.

Figure 2.4 is helpful in analyzing the characteristic transverse length of the computed velocity
fields for each container geometry. Based on the underlying porosity distribution, which is inti-
mately related to a particular container geometry, this length characterizes the straight distance
transverse through a packing that needs to be covered to realize equilibration, i.e., a complete
exchange between different velocities of the resulting three-dimensional velocity field (“flow equal-
ization”). Under explicit consideration of the symmetry of the velocity fields, it refers to the longest
distance between different velocities, as illustrated by the arrows in the schematic of Figure 2.4 (see
also bottom row in Table 2.1). In cylindrical columns, the highest velocities are found along the
wall, while they are located in the corners of the noncylindrical conduits investigated in this work.
For the cylindrical packing, the complete exchange between velocity extremes in the mobile phase
is achieved by covering the lateral distance from the wall of the cylinder to its center. Consequently,
the characteristic transverse length on the macroscopic (conduit cross-sectional) scale is the radius
of the cylindrical packing, while — due to the prevailing symmetry — it is the half-diagonal of
the quadratic and rectangular geometries, i.e., the distance from each corner to the center of the
packings (see arrows in Figure 2.4). Lateral exchange in the quadratic and rectangular geometries
along the median is always faster than along the diagonal and, thus, not limiting concerning the
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Figure 2.5: Velocity probability distribution functions at Pe = 10 for packings with circular (blue lines) and quadratic
(red lines) cross section at two different bed porosities, ε = 0.42 (top row) and ε = 0.48 (bottom row). For better
visualization of the differences, the distribution functions for the inner packing (left column) are plotted separately from
the distribution functions obtained for the near-wall regions (within a distance of less than 0.5 dp, right column).

dynamics of this equilibration (attainment of asymptotic dispersion behavior). The semicircular
geometry presents the longest characteristic transverse length, namely, the distance between a
corner and the apex of the semicircle. We will return to that important aspect with Figure 2.7. For
the geometries considered in this work, a reduced cross-sectional symmetry (from left to right in
Figure 2.4) results in an increased characteristic transverse length of the velocity field given the
constant cross-sectional area. This is also reflected in the perimeter length of the containers, which
increases from the cylindrical to the semicircular geometry, as well as in the volume-to-surface
ratio, which shows a corresponding decrease (Table 2.1).

The impact of the bed porosity on flow heterogeneity for noncylindrical packings is analyzed in
more detail in Figure 2.5, which compares the velocity probability distribution functions of circular
and quadratic packings for the two selected bed porosities, ε = 0.42 (top row) and ε = 0.48

(bottom row), at Pe = 10. The distributions for the near-wall region (less than 0.5 dp distance from
the wall) are plotted separately from the functions for the inner core of the packing for a clearer
visualization of the differences. The velocity probability functions for the near-wall region have
a form different from those for the inner core. The former comprise a shoulder that appears at
higher flow velocities, reflecting a higher percentage of advanced flow velocities in the near-wall
region. The maximums of the near-wall region functions are also shifted slightly to higher velocities
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compared to the inner core functions because the fluid channels in the near-wall region are larger
and less tortuous than those of the inner core. This behavior is observed for both cross-sectional
geometries and bed porosities, but is more pronounced in the quadratic packings and at higher
bed porosity. While the velocity probability functions for the inner core are practically identical
for both cross-sectional geometries at ε = 0.42, one can observe a difference between the two
geometries in the near-wall velocity probability functions, with the quadratic packing exhibiting
a higher percentage of advanced flow velocities. This is more aggravated at ε = 0.48, where the
difference between the cross-sectional geometries is also visible in the inner core. The presence of
more locations of higher flow velocities in the near-wall region causes a decrease of higher flow
velocity regions in the inner core; i.e., the average velocity in the inner core is decreasing, because
the average velocity in the whole packing is kept constant. In all probability functions shown in
Figure 2.5, there is a small but finite probability for negative arguments translating to fluid flow in
the opposite direction of the applied pressure gradient. This stems from the fact that fluid motion
in a curved path around a spherical particle contains velocity vector components with opposite
orientation to the main direction of flow.246,247

2.3.3 Hydrodynamic dispersion
The differences between cylindrical and noncylindrical packed beds appear to be subtle from
the velocity probability distribution functions shown in Figure 2.6, but they critically affect the
hydrodynamic axial dispersion coefficient of the packings as evidenced in Figure 2.6 and Figure 2.7.
Figure 2.6 shows the effective (asymptotic) axial dispersion coefficient normalized by Dm as a
function of the average porosity for Pe = v̄dp/Dm = 10 (left) and Pe = 20 (right; this value is
realized by doubling the average velocity v̄ through the packings with respect to Pe = 10). Curves
are drawn for circular and quadratic geometries for which packings with seven bed porosities in the
range of 0.40 ≤ ε ≤ 0.50 were generated. Dispersion coefficients for the additional set of packing
geometries are also shown at the selected bed porosities of ε = 0.42 and ε = 0.48. Generally,
the dispersion coefficient grows monotonically with increasing average porosity and Pe. But the
slope of the curve for the quadratic geometry is decidedly steeper than the slope for the cylindrical
packings. While at a bed porosity of ε = 0.40 the hydrodynamic dispersion coefficient for the
quadratic packing geometry differs little from that of the cylindrical packing, the situation becomes
more acute at higher bed porosity. For example, an increase in ε from 0.40 to 0.50 at Pe = 10 (20)
results in an increase in Dax by a factor of 3.1 (3.4) and 4.6 (5.2), respectively, for packings with
circular and quadratic cross sections.

The corners of the container with quadratic cross section favor the formation of channels of
advanced fluid flow velocity. The extension of these channels as well as the actual velocity in these
channels increases with increasing bed porosity. The dispersion coefficients for the rectangular and
semicircular geometries seem to follow a similar relationship with the bed porosity as the quadratic
packing geometry. Their actual coefficients are, however, always larger than the corresponding co-
efficient for the quadratic geometry. But while the difference in the dispersion coefficients between

246 R. S. Maier et al. Phys. Fluids, 10: 60–74, 1998.
247 D. Hlushkou, A. Seidel-Morgenstern, and U. Tallarek. Langmuir, 21: 6097–6112, 2005.
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Figure 2.6: Effective axial dispersion coefficient Dax (normalized by the bulk molecular diffusion coefficient Dm) as
a function of the bed porosity simulated for an inert tracer at Pe = 10 (left) and Pe = 20 (right). For the circular
and quadratic packing geometries, seven values in the range of 0.40 ≤ ε ≤ 0.50 were computed, while for the packed
rectangular and semicircular geometries values at two selected bed porosities of ε = 0.42 and ε = 0.48 were calculated.

quadratic and rectangular geometries is relatively small at both, the lower and higher bed poros-
ity, the hydrodynamic dispersion coefficient for the semicircular geometry seems to be genuinely
affected by higher bed porosities.

This leads us to another important aspect of the noncylindrical packings, already addressed
in Figure 2.4, which is related to the reduced symmetry of noncylindrical compared to cylindrical
geometries. The different conduit geometries differ with respect to the characteristic transverse
length for the tracer molecules to achieve lateral equilibration between different flow velocities in a
packing (see arrows in the schematic of Figure 2.4 and Table 2.1). The associated transient behavior
is intimately coupled to the conduit geometry. Figure 2.7 shows the development of normalized
axial dispersion coefficients as a function of the dimensionsless diffusive time td = 2Dmt/d

2
p,

calculated for a bed porosity of ε = 0.48. Two curves are shown for each cross-sectional geometry,
one calculated for Pe = 10 and one for Pe = 20 (that is, for twice the average velocity through
the packings). Each curve represents an average of three independent calculations starting with
the generation of the packings from three different seeds. Values for td in Figure 2.7 represent the
time for each geometry and value of Pe after which asymptotic behavior in Dax/Dm is observed.

We notice two trends: first, the time needed for reaching asymptotic behavior increases from
the circular through the quadratic and rectangular to the semicircular geometry for both values of
Pe. Second, this time is smaller for Pe = 20 than for Pe = 10, for all geometries. The characteristic
diffusive times needed for reaching asymptotic behavior are longest for the semicircular geometry,
which negatively affects hydrodynamic dispersion in these packings (cf. Figure 2.6; ε = 0.48).
At high bed porosity, the channels in the corners of the semicircular containers are also more
extended and display higher flow velocity than the channels in the corners of the quadratic and
rectangular containers (Figure 2.4). The presence and characteristics of these channels as well as
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one calculated at Pe = 10 (blue lines) and one at Pe = 20 (red lines). Each curve represents an average of three
independent calculations starting with the generation of packings from three different seeds. The actual values for
td provided in the figure represent the time for each geometry (and value of Pe) after which asymptotic behavior in
Dax/Dm is observed.

the required time (or corresponding spatial dimension) for lateral equilibration cause the relatively
high dispersion coefficient of the semicircular packings (Figures 2.6 and 2.7).

The values of the diffusion times needed for reaching asymptotic behavior reported in Fig-
ure 2.7 can be expressed as distances in units of dp. For example, with the cylindrical packing at
Pe = 10, we find td = 2Dmt/d

2
p = 8.87, from analysis of the corresponding curve for Dax/Dm. This

dimensionless time translates to a distance of (2Dmt)
1/2 = (8.71/2) dp ≈ 3 dp. A comparison of the

distances calculated accordingly from the td-values in Figure 2.7 with the characteristic transverse
length for each cross-sectional geometry deduced in Figure 2.4 from the symmetry of the velocity
fields (cylinder radius, rc = 5 dp in the above example for the cylindrical packing) shows that the
former are generally smaller and also flow rate dependent.

This finding may originate in the fact that lateral equilibration between different velocities in a
packing is not determined by purely diffusive behavior, as reflected by the values for td = 2Dmt/d

2
p

in Figure 2.7, but is actually accelerated by a combination of lateral diffusion and convective
motion (eddy dispersion).248 For example, while the time scale for asymptotic development of
axial dispersion in an unpacked cylinder is t ∼ r2

c/Dm, from Taylor dispersion, the time scale
for packed cylinders expected by analogy is t ∼ r2

c/Dtr (where Dtr is the transverse dispersion
coefficient). In other words, Dax/Dm in Figure 2.7 converges toward its asymptotic limit on a time
scale that is proportional to the ratio of the characteristic transverse dimension squared and the
transverse dispersion rate (not the purely diffusive one). Thus, within a given time needed to
reach asymptotic dispersion, a larger distance can be sampled by the tracer molecules based on the
transverse dispersion coefficient (Dtr) than by assuming purely diffusive behavior Dm.

248 U. Tallarek et al. AIChE J., 42: 3041–3054, 1996.
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This conclusion finds support in the velocity dependence of the transverse dispersion rate,
which can explain the shorter times required to realize asymptotic dispersion at Pe = 20 compared
to Pe = 10 (Figure 2.7). It also agrees with data reported recently by Maier et al.,180,185 who have
shown that the time scale for attaining asymptotic dispersion in cylindrical packings is neither the
convective nor the diffusive time scale, but related to r2

c/Dtr. Similar effects have been predicted
for packed beds confined in conduits of any cross-sectional geometry,185 which is confirmed with
the selected noncylindrical packings in this work.

2.4 Conclusions
The presented numerical approach allows the simulation of fluid flow and solute dispersion in
three-dimensional fixed beds confined in containers of arbitrary shape. It provides quantitative
information on the spatial distribution of the simulated velocities and the resulting transient as well
as asymptotic hydrodynamic dispersion. This feature was utilized to analyze the velocity profile and
axial dispersion in pressure-driven flow through packings of uniform, solid spheres in conduits with
four different cross-sectional geometries, namely, circular, quadratic, rectangular, and semicircular,
over a range of bed porosities of 0.40 ≤ ε ≤ 0.50.

The analysis of our data revealed two important aspects that influence the hydrodynamic
dispersion in noncylindrical compared to cylindrical packed beds: i) the presence of corners gives
rise to the formation of channels of advanced fluid flow velocity, and ii) the reduced symmetry
of noncylindrical packings effects a longer characteristic length of the solute molecules for lateral
equilibration between different velocities. These aspects effect that the axial hydrodynamic dis-
persion in noncylindrical packed beds is always larger than in cylindrical packed beds of equal
cross-sectional area. Among the different noncylindrical geometries, the quadratic geometry shows
the best performance, followed by the rectangular geometry. The semicircular geometry displays
the worst dispersion characteristics, partly because the semicircle corners allow for extended chan-
nels of advanced fluid flow velocity, partly because the semicircle has the lowest symmetry among
the investigated geometries and a decidedly longer characteristic transverse length. Of particular
importance is the strong dependence of the hydrodynamic dispersion coefficient on the bed poros-
ity of the noncylindrical packings. Noncylindrical packings are more strongly affected by higher bed
porosities than cylindrical packings, while at low bed porosities, hydrodynamic dispersion comes
close to those of the cylindrical packings.

It is therefore advisable to consider the symmetry of the channel cross section in the design and
fabrication of separation columns for LC-microchips, but of prime importance for chromatographic
performance is the porosity of the packing. To achieve a dense packing in microchip separation
columns, it is necessary to optimize packing procedures, and in this respect, the development of
high-pressure rating microchannels and fittings is particularly desirable.

185 R. S. Maier et al. Philos. Trans. R. Soc. A, 360: 497–506, 2002.



Chapter 3

Packings of trapezoidal cross sections

This chapter is concerned with hydrodynamic dispersion in the packings of trapezoidal cross sec-
tions; trapezoidal packings are derived from “ideal” rectangular geometries and packings of both
types are compared. Results presented here were published in the journal Lab on a Chip in 2008.249

3.1 Introduction
In the quest for miniaturized analytical systems,221 nano-HPLC and microchip-HPLC are of great
interest.250 Beside the advantages of increased speed and sensitivity as well as reduced sam-
ple and consumables volumes that come with miniaturization, the flow rates involved are well
suited to ESI-MS, the detector-of-choice for screening and proteomics applications.8 Nano-HPLC
utilizes cylindrical fused-silica capillaries with internal diameters between 30 and 100 µm. Al-
though open-tubular and monolithic columns are in use, the predominating stationary support
are fixed beds of spherical porous silica-based particles of 3 to 5 µm diameter. Their popularity is
mainly due to the wide range of surface modifications available for these particles.251 In microchip-
HPLC, by contrast, the separation medium is confined in a microchannel of noncylindrical shape.
From the limited number of recent publications on HPLC-microchips using fixed beds, a defi-
nite preference for monolithic9,10,224,225,227–229,252 or particulate5,12,222,223,253,254 stationary supports
has not emerged yet.

249 S. Khirevich et al. Lab Chip, 8: 1801–1808, 2008.
221 P. S. Dittrich, K. Tachikawa, and A. Manz. Anal. Chem., 78: 3887–3908, 2006.
250 J. Hernández-Borges et al. J. Sep. Sci., 30: 1589–1610, 2007.

8 S. Koster and E. Verpoorte. Lab Chip, 7: 1394–1412, 2007.
251 U. D. Neue. HPLC columns: theory, technology, and practice. Wiley-VCH, 1997.

9 K. W. Ro, J. Liu, and D. R. Knapp. J. Chromatogr. A, 1111: 40–47, 2006.
10 D. S. Reichmuth, T. J. Shepodd, and B. J. Kirby. Anal. Chem., 77: 2997–3000, 2005.

224 J. Carlier et al. J. Chromatogr. A, 1071: 213–222, 2005.
225 Y. Yang et al. Lab Chip, 5: 869–876, 2005.
227 A. Ishida et al. J. Chromatogr. A, 1132: 90–98, 2006.
228 D. A. Mair et al. Lab Chip, 6: 1346–1354, 2006.
229 J. Liu et al. Int. J. Mass Spectrom., 259: 65–72, 2007.
252 P. A. Levkin et al. J. Chromatogr. A, 1200: 55–61, 2008.

5 H. Yin et al. Anal. Chem., 77: 527–533, 2005.
12 C.-Y. Shih et al. J. Chromatogr. A, 1111: 272–278, 2006.

222 J. Xie et al. Anal. Chem., 77: 6947–6953, 2005.
223 I. M. Lazar, P. Trisiripisal, and H. A. Sarvaiya. Anal. Chem., 78: 5513–5524, 2006.
253 A. Gaspar, M. E. Piyasena, and F. A. Gomez. Anal. Chem., 79: 7906–7909, 2007.
254 S. Ehlert et al. Anal. Chem., 80: 5945–5950, 2008.
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While the wide selection of surface-modified particles is still desirable, particle packing inmi-
crofluidic channels is more difficult than in fused-silica capillaries. On the other hand, mono-
lithic beds can be prepared in situ in the channels and chemically anchored to the channel
walls.231,232,255,256

Microchannel fabrication on chips can be carried out by a number of techniques,8 but inherently
results in noncylindrical shapes with corners. “Cornerless” channels have been made by the bonding
of two wafers with hemi-elliptical channels,9,10 and Abate et al.257 recently achieved the fabrication
of a cylindrical channel by coating the inside of a rectangular PDMS channel with a glass-like layer
using sol–gel chemistry. This channel was however not subjected to high pressure applications.
The cross-sectional geometry of a microchannel is mainly determined by the specific materials
and methods used for its fabrication. Quadrilateral channels are prevalent, but although channel
dimensions are usually described in terms of width and height, the cross-sections are in fact more
often trapezoidal than regular rectangles.258

The effect of the conduit shape on flow and dispersion in open microchannels with trape-
zoidal cross section has been investigated for pressure-driven, electrokinetically-driven, and mixed
flows.150,243,258–260 It was found that trapezoidal channels differ significantly from rectangular chan-
nels with respect to the resulting fluid flow profiles and axial dispersion. In rectangular open
microchannels, axial dispersion is governed by the smaller of the lateral dimensions of the channel
(referred to as the height or depth of the channel), whereas in trapezoidal channels fluid flow in
the triangular side-regions dominates overall axial dispersion.

In packed beds, where the packing microstructure determines time and lengths scales gov-
erning flow and dispersion,166,235,261,262 the effect of noncylindrical conduit geometry has rarely
been addressed.14,213 We recently investigated the impact of corners in noncylindrical conduits on
the axial dispersion in particulate beds for quadratic, rectangular, and semicircular cross-sectional
geometries by quantitative numerical simulation methods (Chapter 2). This analysis revealed that
regions of advanced fluid flow are present in the corners of noncylindrical packings, leading to
larger axial dispersion coefficients as compared to cylindrical packings of equal cross-sectional area.
The dimensions of the corner channels are determined by the specific conduit geometry and the
average bed porosity of the packing. In densely packed beds, i.e., at low bed porosity, these regions

231 D. S. Peterson. Lab Chip, 5: 132–139, 2005.
232 K. W. Ro, R. Nayak, and D. R. Knapp. Electrophoresis, 27: 3547–3558, 2006.
255 J. Billen and G. Desmet. J. Chromatogr. A, 1168: 73–99, 2007.
256 M. De Pra, W. Th. Kok, and P. J. Schoenmakers. J. Chromatogr. A, 1184: 560–572, 2008.
257 A. R. Abate et al. Lab Chip, 8: 516–518, 2008.
258 K. Horiuchi, P. Dutta, and C. D. Richards. Microfluid. Nanofluid., 3: 347–358, 2007.
150 D. Dutta, A. Ramachandran, and D. T. Leighton. Microfluid. Nanofluid., 2: 275–290, 2006.
243 A. Ajdari, N. Bontoux, and H. A. Stone. Anal. Chem., 78: 387–392, 2006.
259 E. K. Zholkovskij and J. H. Masliyah. Chem. Eng. Sci., 61: 4155–4164, 2006.
260 M. Bahrami, M. M. Yovanovich, and J. R. Culham. Int. J. Heat Mass Transfer, 50: 2492–2502, 2007.
166 J. M. P. Q. Delgado. Heat Mass Transfer, 42: 279–310, 2006.
235 A. de Klerk. AIChE J., 49: 2022–2029, 2003.
261 U. Tallarek, E. Bayer, and G. Guiochon. J. Am. Chem. Soc., 120: 1494–1505, 1998.
262 D. Kandhai et al. Phys. Rev. Lett., 88: 234501, 2002.
14 G. P. Rozing et al. J. Sep. Sci., 27: 1391–1401, 2004.

213 S. Khirevich et al. Anal. Chem., 79: 9340–9349, 2007.
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Table 3.1: Characteristic data of the generated quadrilateral sphere packingsa

Cross- Basic Height, dp Base Width, dp Side- Bottom Top Base- Characteristic
sectional geometry angle aspect base base aspect length for lateral
geometry ratio length, dp length, dp ratio equilibration,bdp

Quadratic 90◦ 10 1 7.071
Trapezoidal 85◦ 10.875 9.125 1.192 11.383
Trapezoidal 80◦ 11.763 8.237 1.428 11.601
Trapezoidal Quadratic 10 75◦ 12.679 7.321 1.732 11.840
Trapezoidal 70◦ 13.640 6.360 2.145 12.104
Trapezoidal 65◦ 14.663 5.337 2.747 12.400

Rectangular 90◦ 14.142 2 7.906
Trapezoidal 85◦ 14.761 13.523 1.092 10.221
Trapezoidal 80◦ 15.389 12.895 1.193 10.450
Trapezoidal Rectangular 7.071 75◦ 16.037 12.247 1.309 10.691
Trapezoidal 70◦ 16.716 11.568 1.445 10.945
Trapezoidal 65◦ 17.439 10.845 1.608 11.226

Rectangular 90◦ 22.361 5 11.402
Trapezoidal 85◦ 22.752 21.969 1.036 12.223
Trapezoidal 80◦ 23.149 21.572 1.073 12.408
Trapezoidal Rectangular 4.472 75◦ 23.559 21.162 1.113 12.600
Trapezoidal 70◦ 23.988 20.732 1.157 12.801
Trapezoidal 65◦ 24.446 20.275 1.206 13.015

a All conduits have a cross-sectional area of 100 d2p and a length of 1200 dp. The bed porosity of all packings is ε = 0.48.
b For the regular orthogonal geometries the characteristic length corresponds to half the diagonal of the cross section. For trapezoidal

packings, the distance between the mid-point of the top base and the bottom base corner was calculated.

are smaller than at higher bed porosity and hydrodynamic dispersion comes close to that observed
for cylindrical packings. It was also found that the reduced symmetry of noncylindrical conduits
translates to a longer characteristic length for lateral equilibration of solute molecules between
different velocities.

We investigate the efficiency of trapezoidal particulate beds in terms of hydrodynamic dis-
persion. We present lateral porosity distributions, fluid flow velocity fields, and axial dispersion
coefficients simulated for random-close packings of spherical particles confined in quadratic, rect-
angular, and trapezoidal conduits of equal cross-sectional area, and analyze the results with respect
to the base angles and respective (side and base) aspect ratios of the conduits.

3.2 Numerical section
The numerical simulations involved three distinct steps for each investigated conduit geometry: i)
generation of a sphere packing, ii) calculation of the accompanying fluid flow velocity field, and
iii) simulation of axial hydrodynamic dispersion at various Péclet numbers Pe = uavdp/Dm (where
uav is the average velocity through the interstitial space of a packing and Dm is the bulk molecular
diffusion coefficient).

Packings of uniform, solid (impermeable), spherical particles of diameter dp with average bed
porosities (interparticle void fractions) of ε = 0.48 were generated in conduits with quadrilateral
cross section (Table 3.1). Fifteen isosceles trapezoids were derived from quadratic and rectangular
geometries by varying the base angle from 85◦ to 65◦ in steps of 5◦ while maintaining the height
of the basic geometry (Figure 3.1) to express a slight to moderate deviation of the trapezoidal
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channels from the respective regular orthogonal conduits. We utilized the Jodrey–Tory algorithm
(see Section 1.1), which allows the generation of unconfined random packings of low bed porosity.
Periodic boundary conditions were used in the axial direction (direction of macroscopic fluid flow).
All packings had a cross-sectional area of 100 d2

p, a length of 1200 dp, and contained about 1.0–
1.3 × 105 particles. The extended length of the packings is necessary to eliminate recorrelation
effects due to the periodic boundary conditions, which could lead to an overestimation of the
actual dispersion coefficient.123 After generation, the packings were discretized using a uniform
grid with a spatial resolution of 30 lattice nodes per sphere diameter (Section 1.2).

For the calculation of low Mach-number, single-phase, isothermal fluid flow in the interparticle
pore space of the generated packings we utilized the lattice Boltzmann method (LBM), specifically
the lattice BGK-model and the D3Q19 lattice (Section 1.3). The no-slip boundary condition was
applied at the solid–liquid interfaces and a constant pressure gradient was enforced in the axial
direction. For each generated packing simulations were performed over a range of Péclet numbers
from Pe = 5 to Pe = 30, by calculating the velocity field at a certain value of Pe and afterwards
scaling the field by multiplication of the fluid velocity at each node of the lattice to get the desired
value of Pe. Using velocity field, calculated with LBM, advective–diffusive mass transport was
simulated by the means of random walk particle tracking method (Section 1.4) with the number
of tracer particles N = 1.2× 10.6

3.3 Results and discussion
3.3.1 Porosity distribution of particulate beds in quadrilateral conduits
Random-close packings of uniform, solid (impermeable), spherical particles of diameter dp were
generated in eighteen conduits with different quadrilateral cross section (Table 3.1). The inves-
tigated conduit shapes were comprised of three basic and fifteen trapezoidal geometries. Basic
geometries included i) quadratic, ii) rectangular with a side-aspect ratio (ratio of width to height)
of 2, and iii) rectangular with a side-aspect ratio of 5. From each of these basic geometries five
isosceles trapezoids were derived by varying the base angle from 85◦ to 65◦ in steps of 5◦ while
maintaining the height of the respective basic geometry (Figure 3.1). All conduits had the same
cross-sectional area of 100 d2

p to enable quantitative comparisons between the packings. This re-
sults in a channel diagonal-to-particle size ratio of ∼ 14 for the quadratic conduit, reflecting a
typical value for particulate beds in miniaturized HPLC systems.254,263 The average bed porosity of
all packings was chosen as ε = 0.48, a larger value than usually encountered in densely-packed
cylindrical fused-silica columns,263 to account for the fact that column packing in microchip sepa-
ration channels is not an optimized procedure yet. Most microfluidic chips cannot tolerate high
pressure and ultrasonication, both of which are crucial factors to achieve densely packed beds.254 All
packings had a length of 1200 dp to exclude the occurrence of recorrelation effects during transient
dispersion. Recorrelation effects originate in the repeated experience of macroscopic flow features
by tracer molecules traversing the length of the packing more than once. Lateral dimensions and
other data of the generated packings are summarized in Table 3.1.

123 R. S. Maier et al. Phys. Fluids, 12: 2065–2079, 2000.
263 S. Ehlert, T. Rösler, and U. Tallarek. J. Sep. Sci., 31: 1719–1728, 2008.
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a)

b)

70 70 70

Figure 3.1: Packings of uniform, solid (impermeable), spherical particles confined in quadrilateral conduits. Shown are
the front view of the generated packings (bottom rows) and projections of particle centers in a packing onto its front
plane (top rows). (a) Basic quadrilateral geometries: quadratic (left), rectangular with side-aspect ratio of 2 (middle),
and rectangular with side-aspect ratio of 5 (right). (b) Trapezoidal conduits derived from the basic geometries above
by varying the base angle, here set to 70,◦ while maintaining the height of the basic geometry. All packings have a
cross-sectional area of 100 d2p, a length of 1200 dp, and an average bed porosity of ε = 0.48. Details and data for further
trapezoidal packings are given in Table 3.1.

Figure 3.1 shows the front view and particle center projections (a) for packings with basic
cross-sectional geometry and (b) for trapezoidal packings derived from these geometries by set-
ting the base angle to 70.◦ The particle center projections (top rows) visualize that particles near
the container walls, within a distance of 2 dp are highly ordered in all packings. The location of
maximum order (corresponding to the highest density of particle centers) is found at a distance of
0.5 dp or 1.5 dp from the container wall.213,235 No significant differences are apparent between the
particle center projections of the packings with the basic cross-sectional geometries (Figure 3.1a).
The observed patterns of the particle centers repeat the shape of the confining conduit.

The rectangular packing with the side-aspect ratio of 5 (Figure 3.1a, right) is distinguished by
a higher degree of order along the median, and the same behavior is observed for the trapezoidal
packing based on this geometry (Figure 3.1b, right). The particle center projections of the two other
trapezoidal packings reveal differences between the top and bottom part of the packings. In the
trapezoidal packing based on the rectangle with a side-aspect ratio of 2 (Figure 3.1b, middle), this is
indicated by a slightly higher degree of order in the top part of the packing. The trapezoidal packing
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Figure 3.2: Lateral porosity distributions of three trapezoidal packings derived from the quadratic geometry by setting
the base angle to 85,◦ 75,◦ or 65.◦ (a) Lateral porosity distributions along the median (top) and the symmetry axis
(bottom) of the trapezoids, calculated along the indicated arrows over the whole length of a packing. (b) Length-wise
averaged two-dimensional representation of the lateral porosity distribution in the packings.

derived from the quadratic geometry (Figure 3.1b, left) not only features a clearly higher order
in the top part of the packing, but also a larger extension of this highly ordered area. Comparing
the quadratic with its derived trapezoidal packing, it is immediately apparent that the loss of the
symmetry axis along the median in the trapezoidal conduit corresponds to a loss of symmetry in
the particle center distribution of the packing. The front views of all sphere packings appear similar,
regardless of conduit shape, and bear no relation to the respective particle center distributions.
This illustrates the fact that cross-sectional images of packings, e.g., obtained by scanning electron
microscopy, do not convey information about the porosity distribution or general quality of a
packing.

Figure 3.2 analyzes the lateral porosity distribution of trapezoidal packings derived from
quadratic geometry for three different base angles. Figure 3.2a shows porosity distribution func-
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tions along the median (top) and along the symmetry axis through the mid-points of the bases
(central symmetry axis, bottom), calculated by averaging the porosity distribution along the indi-
cated arrows over the whole length of a packing. The porosity distribution along the median is
very similar with respect to the central symmetry axis and shows the expected oscillatory behavior
with maximal amplitude of the interparticle void fraction close to unity near the container wall
that is damped over a range of 3–4 dp to a value of ∼ 0.4 in the center of the packing.213,235 With
decreasing base angle 85◦ → 65◦ the porosity distribution exhibits more pronounced minima and
in general indicates a denser packing. The reason for this trend becomes evident after analyzing the
porosity distribution along the central symmetry axis (Figure 3.2a, bottom). There is no symmetry
about the median. The porosity at the top of the packing undergoes stronger fluctuations than at
the bottom of the packing, with decidedly lower minima, reflecting a more ordered, denser packing
of particles in the top part of the conduit compared to the bottom. Thus, there exists a gradient
in packing order and bed density along the central symmetry axis. This behavior is apparent in
all three packings, but becomes more pronounced with decreasing base angle of the conduit. In
Figure 3.2b the length-wise averaged lateral porosity distributions of the packings are shown as
color-coded projections. Regions of high porosity are present in the bottom base corners, and their
extension and local porosity increase with decreasing base angle of the conduit. The occurrence of
these high-porosity regions in and near the bottom corners of the conduit is counterbalanced by
a lower local porosity (higher bed density) in the top part of the packing to maintain the average
bed porosity of ε = 0.48 common to all packings.

As analyzed previously for quadratic and rectangular cross-sectional geometries (Chapter 2),
the corners of a conduit reduce the number of possible particle positions close to the corners which
effects a stronger porosity fluctuation in the corner areas compared to the rest of the packing. The
presence of corners was thus the main influence on the porosity distribution of noncylindrical
compared to cylindrical packings. In this chapter, all conduit geometries are quadrilateral and
have the same number of corners. An isosceles trapezoid contains two different pairs of corners,
the top corners with an angle > 90◦ and the bottom corners with an angle < 90◦ (cf. Figure 3.1
and Figure 3.2), but the porosity distribution does not seem to be influenced so much from the
non-orthogonal corners but from the limitation of available space near the top of the trapezoidal
conduits. The reduced available space in the top part of a packing imposes restrictions on the possi-
ble location of particles which results in a locally higher ordering reflected by stronger fluctuations
in the porosity distribution.

3.3.2 Fluid flow velocity fields
Figure 3.3 presents color-coded fluid flow velocity profiles for nine trapezoidal packings calculated
at a Péclet number (Pe) or reduced velocity of Pe = uavdp/Dm = 10, where uav is the average
velocity through a packing andDm is the bulk molecular diffusion coefficient. The images of the left
column which represent trapezoidal packings based on quadratic geometry closely correspond to
the lateral porosity distributions of Figure 3.2b. We have already shown for quadratic, rectangular,
and semicircular conduits that regions of high local porosity in a packing become channels of
advanced fluid flow (Chapter 2). All nine investigated trapezoidal packings exhibit these rapid-
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Figure 3.3: Fluid flow velocity profiles at Pe = 10 for nine trapezoidal sphere packings with average bed porosity
of ε = 0.48. The trapezoidal conduit shapes were derived from quadratic (left) and rectangular geometries with a
side-aspect ratio of 2 (middle) or 5 (right). Base angles of the trapezoidal cross sections are given on the far left.

flow channels in bottom corners of the conduits (base angle < 90◦), but both, the actual velocity in
these channels as well as their extension, increase with decreasing base angle (85◦ → 65◦) and with
decreasing side-aspect ratio (5→ 1) of the basic geometry (from top to bottom and right to left in
Figure 3.3). While the area of maximum velocity resides in the bottom base corners, the area of
minimum velocity is not as easily located. Cylindrical, quadratic, and rectangular packings all have
their area of minimum velocity around the packing center with an extension that depends on the
actual channel-to-particle size ratio, but this is not the case for the presented trapezoidal packings.
Here, due to the locally increased density and order in the top part of the packing (Figure 3.2)
the lowest velocities are observed at about 0.5 dp from the top base of the trapezoidal conduits,
however, their exact location depends on a particular geometry.

The dependence of the velocity distributions on the base angle of the conduit and the side-
aspect ratio of the basic geometry the respective trapezoidal cross section was derived from is
analyzed in more detail in Figure 3.4. Figure 3.4a depicts velocity probability distribution functions
at Pe = 10 for trapezoidal packings based on the quadratic geometry. These functions represent the
probability of finding a certain axial velocity inside the whole packing (black), the top part of the
packing (red), and the bottom part of the packing (blue). At first glance, the velocity distributions
for the top and bottom part of the trapezoidal packing with a base angle of 85◦ (Figure 3.4a,
top) seem to differ very little from each other, but they already show the characteristics that are
becoming more pronounced with decreasing conduit base angle. There is a higher probability of
finding higher fluid velocities in the bottom part of the packings, and the differences in the velocity
distributions of top and bottom part increase with decreasing base angle (85◦ → 65◦) of the
trapezoidal conduit and decreasing side-aspect ratio (5→ 1) of the basic geometry (Figure 3.4b).
If we compare the differences between top and bottom part velocity distributions of all nine
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Figure 3.4: (a) Velocity probability distribution functions at Pe = 10 for three trapezoidal packings derived from the
quadratic geometry by setting the base angle to 85◦ (top), 75◦ (middle), or 65◦ (bottom). Functions representing the
whole packing (black), the top part of the packing (red), and the bottom part of the packing (blue) are plotted separately.
It is evident that the velocity probability functions of the top part and the bottom part of the packings increasingly deviate
from each other with decreasing base angle of the trapezoidal conduit, i.e., with increasing deviation of the conduit
shape from quadratic geometry. (b) Differences in velocity probability distribution functions between the top and bottom
part of the trapezoidal packings with a conduit base angle of 85◦ (top), 75◦ (middle), and 65◦ (bottom). Packings whose
conduit shape was derived from quadratic geometry show larger differences between top and bottom part distribution
functions than trapezoidal packings derived from rectangular geometries.
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investigated trapezoidal packings, it is apparent that the side aspect ratio of the basic geometry the
trapezoid was derived from has a larger influence than the base angle of the conduit.

3.3.3 Hydrodynamic dispersion
In Figures 3.5 and 3.6 we investigate the efficiencies of the generated packings in terms of hydro-
dynamic dispersion. Normalized axial dispersion coefficients Dax/Dm were calculated from the
displacement of inert tracer molecules at reduced velocities ranging from Pe = 5 to Pe = 30. For
all nine trapezoidal packings depicted in Figure 3.5 axial dispersion grows monotonically with Pe,
but the slope of the curves depends on the base angle of the conduit and the side-aspect ratio of
the basic geometry the trapezoid was derived from. Trapezoidal conduits based on rectangular
geometries show not only a weaker dependence of Dax/Dm on Pe, but this dependence is also less
influenced by the base angle of the conduit. Basing the cross-sectional geometry of a trapezoidal
conduit on a larger rather than on a lower side-aspect ratio rectangle is obviously advantageous.
Trapezoidal conduits derived from quadratic geometry differ clearly from their rectangular-based
counterparts. While a small deviation from orthogonality results in similar dispersion for the in-
vestigated rectangular-based packings, axial dispersion in quadratic based trapezoidal packings is
strongly affected by increasing deviation of the conduit base angle from orthogonality.

In our comparison of trapezoidal packings with constant cross-sectional area, both geometric
factors, base angle and side aspect ratio of the basic geometry, can be jointly expressed by the base-
aspect ratio a/c (a: bottom or longer base length, c: top or shorter base length). This parameter is
a measure for the deviation of a trapezoidal shape from regular rectangular geometry, or for the
inequality between top base and bottom base length. With increasing base-aspect ratio, i.e., with
increasing difference between top and bottom base length, porosity and velocity inhomogeneities
between the top and bottom part of the packing increase (Figures 3.2–3.4), resulting in larger
axial dispersion coefficients compared to regular rectangular conduits (Figure 3.5).

In Figure 3.6, we finally present normalized axial dispersion coefficients for all generated
eighteen packings in dependence of the base angle (Figure 3.6a) and as a function of the base-
aspect ratio (Figure 3.6b). Dax/Dm was calculated at a reduced average velocity of Pe = 10.
If we first compare the regular orthogonal conduits, we find that the quadratic geometry has a
slight advantage over the rectangle with a side-aspect ratio of 2, and both geometries result in
smaller axial dispersion coefficients for packed beds than the rectangular conduit with a side-
aspect ratio of 5. For regular orthogonal conduits axial dispersion can be conclusively analyzed by
the “equilibration length” of a flow field. Based on the underlying porosity distribution which is
intimately related to a particular conduit geometry, this length characterizes the lateral distance
through a packing that needs to be covered to realize equilibration, i.e., a complete exchange
between different velocities of the resulting flow field. With consideration of the actual symmetry
it refers to the longest distance between different velocities, and is thus equal to half the diagonal
of the regular orthogonal conduits, where maximum velocities are found in the corners and the
minimum velocity is located around the center of a conduit (Chapter 2). The larger axial dispersion
coefficient of the rectangular packing with larger side-aspect ratio reflects the longer half-diagonal
distance of this conduit (Table 3.1).
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Figure 3.5: Normalized axial dispersion coefficients of an inert tracer as a function of the Péclet number (Pe) or reduced
velocity Pe = uavdp/Dm (where uav is the average velocity through a packing and Dm is the bulk molecular diffusion
coefficient) for nine trapezoidal sphere packings derived from quadratic (top) or rectangular geometries (bottom left:
side-aspect ratio 2, bottom right: side-aspect ratio 5).

With the deviation from orthogonality of the conduit corners and the beginning of differing
top and bottom base lengths the characteristic lateral equilibration length of a packing geometry
becomes only a side issue. At a bottom base angle of 85,◦ it is the reason why the trapezoidal
packing derived from the large side-aspect ratio rectangle still has a slightly larger axial dispersion
coefficient than the trapezoidal packing based on the rectangle with a side-aspect ratio of 2. It is
to be noted that the characteristic length scale for lateral equilibration in the trapezoidal conduits
differs from those of the regular orthogonal conduits. We have seen in Figure 3.3 that the location
of maximum flow velocity is found in the bottom base corners, but the location of minimum flow
velocity is near the top base. Therefore the characteristic length for lateral equilibration, i.e., the
longest distance between different velocities in the smallest geometrical subunit of the packing cross
section, which in trapezoidal packings is obtained by cutting the bed along the central symmetry
axis from top to bottom base, is equal to the distance between the mid-point of the top base and
the bottom base corner (Table 3.1). The quadratic-based trapezoidal packing exhibits a decidedly
larger axial dispersion coefficient than its rectangular-based counterparts at a bottom base angle
of 85,◦ despite the fact that its characteristic lateral equilibration length is smaller than that of the
trapezoidal packing based on the large side-aspect ratio rectangle. It demonstrates that in this case
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Figure 3.6: Normalized axial dispersion coefficients of an inert tracer at Pe = 10 for all investigated sphere packings
(a) as a function of the base angle of the quadrilateral conduits and (b) as a function of their base-aspect ratio (ratio of
bottom base to top base length).

the actual amplitude of heterogeneities (intensity of dissimilarity between top part and bottom part
of a trapezoidal packing), expressed by the relatively high base-aspect ratio of the quadratic-based
trapezoidal packing (Table 3.1), and not the length over which disequilibrium exists, becomes the
dominating factor for dispersion.

For trapezoidal packings the dominating influence of the conduit shape on packing homo-
geneity is the ratio of the bottom base length to the top base length. With increasing value of this
base-aspect ratio, i.e., with increasing inequality between top base and bottom base length, there is
less space available for the positioning of particles near the top base than near the bottom base. The
column-to-particle diameter ratio (particle-aspect ratio) of conventional cylindrical columns would
have to be replaced in quadrilateral conduits with the ratio of the conduit wall-to-wall-distance
to the particle diameter. Contrary to regular rectangular geometries, this ratio is not a constant in
trapezoidal conduits, but a series of values increasing from the smaller top base to the larger bottom
base. Limited space for particle packing results in more ordered regions with higher fluctuations of
local porosity. This is known for cylindrical packings with small column-to-particle diameter ratio,235

but equally applies to regions of trapezoidal packings with a small conduit wall-to-wall–distance-
to-particle diameter ratio (Figures 3.1 and 3.2). Compared to the basic quadratic packing with a
particle-aspect ratio of 10 over the whole height of the packing, we find for the derived trapezoidal
packing with base angle of 65◦ a particle aspect ratio of only ∼ 5 at the top and of ∼ 15 at the
bottom of the packing. The particle-aspect ratio in the rectangular packing with large side-aspect
ratio is ∼22, and in the derived trapezoidal packing with base angle of 65,◦ the particle-aspect ratio
is ∼20 at the top and ∼24 at the bottom. The efficiency of packings in quadrilateral conduits with
large side-aspect ratio is much less affected by deviations from orthogonality of the conduit corners,
because the base-aspect ratio of this conduit geometry increases slowly with decreasing base angle.

Figure 3.6 visualizes that axial dispersion in all investigated quadrilateral particulate packings
grows monotonically with decreasing bottom base angle (increasing base-aspect ratio) of the
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conduit, but that the slope of the curve becomes larger with decreasing side-aspect ratio of the
basic geometry. It therefore appears advantageous with regard to the efficiency of particle-packed
trapezoidal microchannels to base the cross-sectional geometry of the channel on a rectangle
with large side-aspect ratio and to limit the deviation of the corner angles from orthogonality
to a maximum of 10.◦ If, on the other hand, geometries with regular orthogonal conduits can be
manufactured, the quadratic geometry gains a slight advantage and rectangular conduits become
increasingly unfavorable as their side-aspect ratio increases. However, a high degree of precision
is required in manufacturing a regular quadratic conduit because already a 5◦ deviation from
orthogonality makes the resulting trapezoid less favorable than trapezoidal channels derived from
rectangular geometries (Figure 3.6).

3.4 Conclusions
We have presented a quantitative numerical analysis approach to investigate the lateral porosity
distribution, fluid flow field, and axial hydrodynamic dispersion in particulate beds fixed in con-
duits with quadrilateral shape, with emphasis on trapezoidal geometries. We have shown that
trapezoidal packings differ significantly from quadratic or rectangular packings. The dominating
influence of the trapezoidal conduit geometry is the inequality between top and bottom base length,
resulting in a decreasing number of possible particle positions from the larger bottom base to the
smaller top base of the conduit. The limitations of restricted space in the top part of the trapezoidal
conduits effect a more ordered, denser packing structure with stronger fluctuations of local poros-
ity, while the packing structure in the bottom part of the conduit is less ordered with regions of
maximum porosity in the bottom base corners. The loss of a symmetry axis in going from a regular
rectangular to a trapezoidal conduit is immediately reflected in the lateral porosity distribution and
the accompanying fluid flow field. In all investigated quadrilateral packings, channels of advanced
fluid flow reside in the high-porosity corners of the conduit. In the bottom base corners (base
angle < 90◦) of trapezoidal packings, however, these channels are more extended than in regular
orthogonal packings, while the channels in the top corners are much less developed. Axial disper-
sion in packings with regular orthogonal cross-sectional geometries is affected by the channels
of advanced fluid flow in the conduit corners and reflects the different characteristic lengths of
the conduits for lateral equilibration (equal to half their diagonal). In trapezoidal packings axial
dispersion is primarily influenced by the base-aspect ratio of the conduit. An increasing base-aspect
ratio of the conduit increases the porosity difference between the more ordered, denser packed top
part and the less-ordered bottom part as well as the extension of and flow velocity in the bottom
base corners, resulting in increased axial dispersion. The presented data lead to the conclusion that
for trapezoidal packings composed of uniform, solid (impermeable), spherical particles, a channel
design with a small base-aspect ratio, i.e., with its cross section as close as possible to a large
side-aspect ratio rectangle, is with regard to efficiency preferable over a trapezoidal channel of
comparable height and width.





Chapter 4

Reconstructed HPLC Microchip

This chapter is dedicated to the hydrodynamic dispersion in packings of “real life” cross-sectional
shape: sphere packings are generated in containers with the cross section reconstructed from a
high-resolution SEM image of a real HPLC-microchip. In addition, average packing porosity and
particle-size distribution were estimated from experimentally determined values. Results presented
in this chapter were published in the journal Analytical Chemistry in 2009.39

4.1 Introduction
In recent years, the miniaturization of analytical techniques and their implementation on micro-
fabricated devices (chips) has been a focus of research, triggered particularly by the requirements
of small sample volumes and high throughput in the “omics” era.8,264,265 Liquid chromatography
has been successfully miniaturized in the form of micro- and nanoflow HPLC,250,266,267 but the im-
plementation on the chip has proven to be tedious, mostly for reasons related to pressure: the
difficulty of generating high pressure with on-chip integrated pumps as well as of fabricating high-
pressure rating microchips. Consequently, on-chip liquid chromatography is underdeveloped, not
only compared to other chip-based analytical techniques but also in view of the importance of
HPLC as an analytical technique. The existing LC-microchips differ widely in i) the materials and
methods used for their fabrication, ii) their grade of integration, i.e., in the number and kind of
instrumental elements contained on the chip, and iii) their chromatographic separation elements
which encompass particulate and monolithic packed beds, open tubulars, and microfabricated
pillar arrays.231,256 Contrary to the cylindrical stainless-steel columns or fused-silica capillaries of
analytical and miniaturized HPLC, microchips contain noncylindrical separation channels whose
cross-sectional shapes depend on the material and method used for their fabrication. Separation

39 S. Khirevich et al. Anal. Chem., 81: 4937–4945, 2009.
8 S. Koster and E. Verpoorte. Lab Chip, 7: 1394–1412, 2007.

264 P. S. Dittrich and A. Manz. Nat. Rev. Drug Discovery, 5: 210–218, 2006.
265 K. Ohno, K. Tachikawa, and M. Manz. Electrophoresis, 29: 4443–4453, 2008.
250 J. Hernández-Borges et al. J. Sep. Sci., 30: 1589–1610, 2007.
266 G. P. Rozing. LC-GC Eur., 16: 14–19, 2003.
267 J. M. Saz and M. L. Marina. J. Sep. Sci., 31: 446–458, 2008.
231 D. S. Peterson. Lab Chip, 5: 132–139, 2005.
256 M. De Pra, W. Th. Kok, and P. J. Schoenmakers. J. Chromatogr. A, 1184: 560–572, 2008.
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channels on recent LC-microchips have approximately semicircular,9,223 elliptical,10 quadratic,225

rectangular,11,268 or trapezoidal cross sections5,12,227,229,269,270 which deviate from the ideal geome-
tries with features such as, e.g., curved sides, rough edges, and irregularly angled corners. The
pressure sensitivity of most microchips prohibits the use of high pressure and ultrasound for par-
ticle packing, so that packing densities comparable to those of capillary HPLC columns cannot be
expected. The noncylindrical and nonideal cross-sectional geometry as well as the relatively high
interparticle porosities should affect the quality of particulate microchip packings, but the subject
has not received much attention.14 This is partly due to the fact that the majority of existing LC-
microchips is still experimental in character and that the aim is more often set toward integration
rather than performance.

Previously, our group has addressed the question of how the noncylindrical conduit geometry
of particulate HPLC-microchip packings influences axial dispersion, and thus the efficiency of the
chromatographic separation, through numerical simulation (see Chapters 2 and 3) as well as
experimental studies.103,254 The issues investigated up to now were the presence of corners in the
conduit, the symmetry of the conduit cross section (Chapter 2), the base angle and base-aspect
ratio (i.e., the ratio of the longer base length to the shorter base length) in isosceles trapezoidal
conduits (Chapter 3), the average interparticle porosity of the packings and the optimal packing
conditions,254 the particle-aspect ratio (ratio of conduit cross-sectional size to particle size),103 and
the particle-size distribution of the packing material.103

In our previous numerical simulation studies (Chapters 2 and 3), the modeled packings con-
sisted of hard, impermeable spheres of uniform diameter (monodisperse packings) confined in
conduits with regular cross-sectional geometries. To approach real-life conditions, the confined
sphere packings generated in this study were modeled after real-life HPLC-microchip packings,103,254

by reconstructing i) the actual cross-sectional geometry of the microchannel, ii) the particle-size
distribution of the packing material, and iii) the average interparticle porosity of the packings
(packing density).

Figure 4.1 is a schematic representation of the basic elements and flow of information in
this work. Our study is based on a prototype HPLC/UV-microchip that integrates sample injection,
chromatographic separation, and UV detection. Figure 4.1 (top right) shows the experimental
setup in which the sample injection end of the microchip is placed between the stator and rotor of

9 K. W. Ro, J. Liu, and D. R. Knapp. J. Chromatogr. A, 1111: 40–47, 2006.
223 I. M. Lazar, P. Trisiripisal, and H. A. Sarvaiya. Anal. Chem., 78: 5513–5524, 2006.
10 D. S. Reichmuth, T. J. Shepodd, and B. J. Kirby. Anal. Chem., 77: 2997–3000, 2005.

225 Y. Yang et al. Lab Chip, 5: 869–876, 2005.
11 J. Liu et al. Anal. Chem., 81: 2545–2554, 2009.

268 A. Bhattacharyya and C. M. Klapperich. Anal. Chem., 78: 788–792, 2006.
5 H. Yin et al. Anal. Chem., 77: 527–533, 2005.

12 C.-Y. Shih et al. J. Chromatogr. A, 1111: 272–278, 2006.
227 A. Ishida et al. J. Chromatogr. A, 1132: 90–98, 2006.
229 J. Liu et al. Int. J. Mass Spectrom., 259: 65–72, 2007.
269 J. F. Borowsky et al. Anal. Chem., 80: 8287–8292, 2008.
270 M. T. Koesdjojo, C. R. Koch, and V. T. Remcho. Anal. Chem., 81: 1652–1659, 2009.
14 G. P. Rozing et al. J. Sep. Sci., 27: 1391–1401, 2004.

103 S. Jung et al. J. Chromatogr. A, 1216: 264–273, 2009.
254 S. Ehlert et al. Anal. Chem., 80: 5945–5950, 2008.
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Figure 4.1: Schematic representation of the basic elements and flow of information in this study. Top row (from right to
left): prototype HPLC/UV-microchip placed between the stator and rotor of a Rheodyne valve (left) and a special holder
(right) for connection to a diode array UV-detector; high-resolution image of the unpacked separation channel on this
microchip; number-based particle-size distribution of the packing material. Middle row: reconstructed cross section of
the microchannel (middle); lateral velocity distribution in the empty reconstructed microchannel (right); cross section
of a reconstructed microchip packing (left). Bottom row: lateral porosity (left) and velocity distribution (middle) in
a reconstructed microchip packing; time-dependent axial dispersion in the empty and particle-packed reconstructed
microchannel (right).

a Rheodyne valve (left), and the end containing the UV-detection cell is fixed by a holder (right) for
connection to a diode array UV detector. The cross-sectional geometry of the microchip separation
channel (top row, middle) was reconstructed for the simulations (middle row, middle) and packed
with particles whose diameters matched the experimentally determined particle-size distribution
of the packing material (top row, left). Several packings at bed porosities (average interstitial
void volume or interparticle porosity) between ε = 0.42 and ε = 0.48 were generated (middle
row, left) and analyzed with regard to their lateral porosity distributions (bottom row, left). The
lateral velocity distribution in the generated packings (bottom row, middle) as well as in the empty
channel (middle row, right) was calculated from the respective 3D velocity fields. Evolution of
the axial dispersion coefficient over time was studied in packed and empty channels (bottom row,
right), and simulated dispersion data were compared to experimental separation efficiencies of the
HPLC/UV-microchips.
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4.2 Experimental section
All details concerning the prototype HPLC/UV-microchips are described in previous publications of
our group.103,254 The term prototype refers to the fact that these microchips were specially fabricated
for our research with a UV-detection cell. They are, however, very similar to the commercially avail-
able HPLC/MS-microchips which contain an emitter needle for coupling to ESI-MS (electrospray
ionization mass spectrometry).5 For convenience, the salient points are briefly described here.

The separation channels on these prototype HPLC/UV-microchips (Agilent Technologies, Wald-
bronn, Germany) were slurry-packed by applying pressures between 150 and 300 bar, with or
without the assistance of ultrasound. The packing material was 5 µm Zorbax SB-C18 (Agilent
Technologies, Waldbronn, Germany) with a mean intraparticle pore size of 80 Å and a Sauter
mean diameter of 5.51 µm.263 Dry particles were suspended in tetrahydrofuran, and methanol was
used as the pushing solvent. Interparticle porosities were determined by inverse size-exclusion
chromatography of a suitable polystyrene standard in methylene chloride with UV detection at
230 nm.103,254,263 Separation efficiencies were analyzed by isocratic elution of a mixture of five alkyl-
benzenes (containing uracil as the dead-time marker) with 80/20 (v/v) acetonitrile/water and UV
detection at 210 nm. Plate heights for the pentylbenzene peak (k′ = 3.5) were calculated with the
Agilent ChemStation software and found, not at least due to the high symmetry of the peaks, to be
practically identical to those obtained by the independently applied method of moments (via the
second central moment). Axial dispersion coefficients (Dax) were calculated from plate heights
(H) and the average mobile phase velocity (uav) through Dax = Huav/2 and were normalized by
Dm, the diffusion coefficient of the tracer in the bulk mobile phase. For pentylbenzene in 80/20

(v/v) acetonitrile/water, we used Dax = 1.5 × 10−9 m2/s.271 All data were acquired at 298 ± 1 K
with an Agilent 1200 liquid chromatograph, including degasser, nanopump, and a diode array UV
detector.

4.3 Numerical section
Simulation of hydrodynamic dispersion in the reconstructed microchip packings involved three
successive steps: i) generation of confined, polydisperse random sphere packings, ii) calculation
of the 3D fluid flow field in the generated packings, and iii) simulation of advective–diffusive
mass transport in the generated packings and corresponding flow fields. Simulation methods are
described in Chapter 1. In the following, we report only the specific alterations and adjustments
made for this work.

The cross-sectional shape of the conduit was reconstructed from a high-resolution optical
microscope image (15 pixels/µm) of the cross section of an empty HPLC-microchip separation
channel (Figure 4.1). Each pixel in the image was assigned to either one wall or one void node of
the lattice, followed by downsizing the lattice to a lateral resolution of ∼8 pixels/µm. Downsizing
was necessary to fit the lattice into the memory of the available supercomputers, but sufficient grid

263 S. Ehlert, T. Rösler, and U. Tallarek. J. Sep. Sci., 31: 1719–1728, 2008.
271 J. Li and P. W. Carr. Anal. Chem., 69: 2530–2536, 1997.
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resolution for the accurate simulation of fluid flow was maintained.272 The number-based particle-
size distribution of 5 µm Zorbax SB-C18, the material used for slurry-packing of the HPLC/UV-
microchip separation channels, is also shown in Figure 4.1 (top row, left). This experimentally
determined log-normal distribution was discretized for the simulations with a step size of 0.10 µm.
The grid resolution was 19.8 nodes for dp,min = 2.72 µm (smallest particles in the distribution) and
34.1 nodes per dp(Nmax) = 4.69 µm (maximum of the distribution). Final dimensions of the lattice
(computational domain containing the packing) were 617× 378× 99 000 nodes (in the x, y, and
z-directions, respectively), corresponding to 18.1 dp(Nmax)× 11.1 dp(Nmax)× 2903 dp(Nmax).

Confined random sphere packings were generated with bed porosities of ε = 0.42, 0.44, 0.46,
and 0.48. The necessary amount of solid spheres for each packing of a certain bed porosity ε was
calculated, and a corresponding set of particle diameters was generated from the experimentally
determined particle-size distribution. For each bed porosity, five packings were generated from five
different initial random positions of particle centers (seeds), resulting in a total of 20 generated
sphere packings. Lateral porosity distributions presented in the figures refer to one specific pack-
ing at the indicated bed porosity, while axial dispersion coefficients represent the average value
calculated from all five packings of a given bed porosity.

The lattice Boltzmann method (Section 1.3) was used for the simulation of low Reynolds-
number flow of an incompressible fluid within the interparticle space of the generated packings.
For the computational domain described above, we employed a 3D lattice with 19 links at each
lattice node resulting in a lattice size of ∼ 2 TB. The no-slip boundary condition (realized by the
“bounce-back” scheme) at solid–liquid interfaces and periodic boundary conditions along the z-axis
were applied to the lattice nodes.

The simulation of one fluid flow velocity field in a reconstructed microchip packing required
3000 LBM iterations, 3 TB memory space, and took ∼ 1.5 h on 8192 processor cores of an IBM
Blue Gene/P system. For each packing, the velocity field was first calculated at a low Péclet number,
Pe = uavdp/Dm (where uav is the average fluid flow velocity through a packing and Dm is the bulk
diffusion coefficient of the tracer particles, see below), and velocity fields at average velocities of
up to Pe = 140 were subsequently received by linear rescaling. For calculating Pe, we used the
Sauter mean diameter of the packing material (dp = 5.51 µm).

Mass transport in the generated packings and fluid flow velocity fields was simulated by
a random walk particle tracking technique, which is described in Section 1.4. Hydrodynamic
dispersion coefficient was calculated as described in Subsection 1.4.3.

4.4 Results and discussion
4.4.1 Unpacked microchip
Figure 4.2 shows the cross section of the unpacked separation channel on the HPLC/UV-microchip
(top left) and its reconstruction for the simulations (white circumference, top right). The HPLC/UV-
microchip is fabricated from three layers of polyimide film using direct laser ablation to define

272 D. Kandhai et al. Philos. Trans. R. Soc. A, 360: 521–534, 2002.
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channels and holes followed by thermal pressure lamination of the three films. The side-walls of
the separation channel originate from the middle polyimide layer (of 50 µm thickness), while the
bottom and top of the channel originate from two polyimide layers of 125 µm thickness each. The
separation channel (Figure 4.2, top left) has a length of ∼75 mm and an approximately trapezoidal
cross section with dimensions of 68 µm (bottom base) × 82 µm (top base) × 50 µm (height) re-
sulting in a cross-sectional area of 3750 µm.2 Deviations from regular trapezoidal geometry are the
result of the fabrication process. Laser defocusing effects produce slanted walls and curved sides
(Gaussian profile of the spatial energy distribution of the laser) and the deposition of ablated and
laminated material leads to irregularly angled corners. Each corner in the microfabricated channel
is different, so that the symmetry of an isosceles trapezoid (around the middle axis) is lost.

As a starting point, flow and transport were simulated in the empty reconstructed microchan-
nel. The lateral distribution of axial velocity (simulated at an average velocity of 3 mm/s) reflects
the parabolic profile of laminar flow (Figure 4.2, top right). Normalized axial dispersion coefficients
Dax/Dm were calculated as a function of the average microchannel velocity (uav) and compared
to experimental data collected with several unpacked HPLC/UV-microchips, using pentylbenzene
as a nonadsorbing tracer (with respect to the channel walls) in a 80/20 (v/v) acetonitrile/water
mobile phase (Figure 4.2, bottom). Simulated data were fitted to the following equation based on
Taylor–Aris dispersion in pressure-driven flow between two parallel plates150

Dax

Dm

= 1 +

(
f

210

)
Pe,2 (4.1)

where Pe is the Péclet number or reduced velocity here defined for the empty channel, Pe =

uavL/Dm (with L, a characteristic transverse dimension). f is a function of the exact cross-sectional
geometry of the channel, which for a trapezoid depends on the ratio h/wl of its height h over the
larger base width wl (top base in Figure 4.2) and the base angle; it is unity for the parallel-plate
geometry.

We obtained a value of 2.62 for f from fitting our simulated data to equation (4.1) (see Fig-
ure 4.2, bottom) using the channel height (h = 50 µm) as the characteristic transverse dimension.
According to Dutta et al.,150 a conduit with ideal trapezoidal cross-sectional geometry, a base angle
of 82,◦ and a ratio ws/h of the smaller base width (ws) to its height of 1.00 would give a value of
2.01 for f (cf. Figure 6 in Reference [150]). Assuming an idealized isosceles trapezoidal geometry
for the reconstructed channel cross section, the ratio ws/h would be 1.36 (68 µm/50 µm), which
would increase the value for f only slightly. The increased f -value of the reconstructed channel
can be explained by the presence of four different, irregularly angled corners, which not only re-
duces the symmetry of the conduit cross section but introduces additional regions of fluid velocity
slow-down compared to a channel with ideal trapezoidal cross section. While the maximum of
the velocity profile is determined by the smallest dimension of a channel’s cross section, in our
case, the channel height, axial dispersion is determined by the distance and actual velocity dif-
ference between high flow velocity and low flow velocity regions. In a trapezoidal channel, the
corner regions are the locations of low velocity and the channel center is the location of maximum

150 D. Dutta, A. Ramachandran, and D. T. Leighton. Microfluid. Nanofluid., 2: 275–290, 2006.
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Figure 4.2: Lateral velocity distribution (averaged over the whole channel length) at an average velocity of 3 mm/s and
normalized asymptotic axial dispersion coefficients Dax/Dm in the unpacked reconstructed microchannel. Simulated
data are fitted to equation (4.1) Experimental data were collected with several prototype HPLC/UV-microchips (each
symbol refers to one microchip).

velocity. The irregularly shaped corner regions of the microfabricated channel thus increase the
low-flow velocity regions, where mass transport becomes diffusion-limited, as well as the distance
between low- and high-flow velocity regions, resulting in an increased Taylor-Aris dispersivity in
the reconstructed microchannel.

Experimental dispersion data (Figure 4.2, bottom) fit the simulated data at low velocities and
then diverge slowly from the simulated values with increasing velocity, because small, yet finite
extra-column effects103,254 contribute increasingly to the overall dispersion at higher velocities. Still,
even at a velocity of 3.5 mm/s (translating to Pe = uavh/Dm ≈ 117, using h = 50 µm and Dm =

1.5× 10−9 m2/s), the maximum difference between simulated and experimental data amounts to
only 12%. In summary, simulation results for the unpacked reconstructed microchannel agree very
well with both the theoretical predictions and experimental data, validating our reconstruction and
numerical analysis approach for this problem.

4.4.2 Porosity distributions
Figure 4.3 evaluates the porosity distribution in two of the reconstructed microchip packings, one
from each end of the investigated range of bed porosities, i.e., at ε = 0.42 and high ε = 0.48.
Figure 4.3a depicts the front view onto the packings (left), the particle center projections (middle),
and the lateral porosity distributions averaged over the whole packing length (right). A geometrical
wall effect, i.e., a higher packing order near the channel wall reflected in a repetition of the channel
cross-sectional geometry by the particle centers adjacent to the high porosity region near the
channel wall (Chapters 2 and 3), can be observed in the particle center projections and lateral
porosity distributions of both packings. The lateral porosity distributions further reveal differences
between packings of different bed porosity. There is generally a region of medium-to-high local
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Figure 4.3: Reconstructed microchip packings of low (ε = 0.42) and high (ε = 0.48) bed porosity. (a) Frontview
onto the packing cross section (left), projection of particle centers (of the 110 000 particles in the front third) onto the
front plane (middle), and lateral porosity distribution averaged over the whole packing length (right). (b) Porosity
distribution along both diagonals of the channel cross section (averaged over the whole packing length).

porosity close to the channel walls with maximum porosity in the four channel corners. A second
region of medium porosity whose shape repeats the channel geometry can be found at some
distance from the channel wall. In the higher bed porosity packing (ε = 0.48), the region of
medium-to-high local porosity is more extended. The situation is further analyzed in Figure 4.3b
which depicts the lateral porosity distributions along the channel’s diagonals. The two diagonal
porosity profiles differ slightly from another because of the channel cross section’s asymmetry.
Oscillations of porosity occur only up to a distance of 17 µm from the channel corners, with the
maximum in the channel corners and a second, much lower, local maximum at a distance of
∼ 9 µm. This contrasts strongly with the porosity distributions of the monodisperse packings in
our previous simulations, where regardless of conduit geometry, the damping range extended
over a distance of 5–6 dp from the conduit corners to the core and where differences between
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Figure 4.4: Packing structure in the corner regions of a reconstructed microchip packing of low bed porosity (ε = 0.42).
The enlarged view of the channel corners shows a projection of all particle centers in this part of the packing onto the
front plane (gray dots). The accumulation of particle centers along the channel’s diagonals is underlined by the blue
dots and circles, which represent centers and circumferences, respectively, of particles positioned along these diagonal
lines. Red dots and circles represent the particles closest to the channel corners.

packings of equal conduit geometry, but different bed porosity, were more emphasized (Chapter 2).
Compared to monodisperse packings, the wall effect is not only damped in its spatial extension
but also in the amplitude of porosity fluctuations. Note that at decreased bed porosity (ε = 0.42),
the local minimum porosity in three of the corners is still higher than the core porosity. Only the
lower left corner displays a local porosity minimum below that of the core, the same as observed
for monodisperse noncylindrical packings. Obviously, this corner shows the least deviations from
regular geometry and can therefore be more effectively packed than the other three corners.

The corner regions of a channel were identified in our previous simulations of noncylindrical,
monodisperse packings as the location of maximum porosity and fluid flow velocity as well as high
porosity oscillations (Chapters 2 and 3). In the present study, the polydispersity of the particles and
the irregular shape of the channel corners particularly affect the packing structure in the corner
regions. Figure 4.4 provides a closer look at the corner regions of a low bed porosity packing
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(ε = 0.42). The particle centers in the corner regions accumulate along the channel’s diagonals,
whereas in monodisperse packings, particle centers near a conduit corner accumulate in a single
point (cf. Chapters 2 and 3). Particles near the channel corners whose diameters are too large to fit
closer into the actual corner (blue in Figure 4.4) effectively block smaller-diameter particles (red)
from access to this region, so that only a tiny fraction of particles actually occupies the channel
corners. Each channel corner deviates in a different way from the ideal trapezoidal geometry and
displays a unique constriction on the packing of particles, an effect whose degree can be observed
in the particle center distributions of the four corner regions (Figure 4.4). The two upper corners
are rather similar, but the lower corners differ strongly from each other. While the lower left corner
exhibits the least void distance between particles and channel wall, the “tail” of the lower right
corner is inaccessible to even the smallest particles and therefore constitutes an isolated void
volume in the confined packing.

4.4.3 Fluid flow field
As expected from the lateral porosity distributions shown in Figure 4.3 and 4.4, the loose packing
structure in the channel corners enables advanced fluid flow in these regions that can be detected in
the lateral velocity distributions of Figure 4.5. The enlargements show lateral velocity distributions
in the top right and bottom left corners of the channel for a low bed porosity (ε = 0.42) and
a high bed porosity packing (ε = 0.48). As observed before, the four channel corners differ in
their shape and so, consequently, in their local porosity and flow velocity. The extension of the
highvelocity region as well as the maximum fluid velocity in this region increases with the amount
of available void space in a corner region. Thus, the maximum fluid velocity over the channel
cross section can be found in the top right corner which has the largest total amount of void space.
The maximum fluid velocity as well as the extension of the high velocity region in the conduit
corners of noncylindrical monodisperse packings increases with increasing bed porosity, simply
because with decreasing bed porosity the local porosity in the corners also decreases (Chapter 2).
Similar behavior can be observed for the bottom left corner of the reconstructed microchannel when
comparing the low bed porosity with the high bed porosity packing. At decreased bed porosity, this
channel corner is packed more densely, as was also observed in the diagonal porosity distribution
of Figure 4.3b. The other three corners, however, display a different behavior. While the extension
of the high-velocity region decreases at decreasing bed porosity, as expected, the maximum fluid
velocity in these three corners increases (Figure 4.5b). This seemingly divergent behavior can be
explained by considering the effect of a decrease in bed porosity on the local porosity in the corner
and the core regions of the channel. At decreasing bed porosity, the local porosity in the corner
regions does decrease (Figure 4.3b), but the relative change is small, because the corner regions
are difficult to access for most particles and much of the actual corner space is practically empty.
The corners are isolated void volumes. The core of the channel, however, can be packed more
tightly, so the void volume in the channel core of the low bed porosity packing with (ε = 0.42) is
smaller (cf. Figure 4.3b), and consequently the hydraulic permeability in this region is lower than
in the higher bed porosity packing (ε = 0.48). Because the velocity averaged over the channel cross
section is kept constant in our simulations (Pe = uavdp/Dm = 12 in Figure 4.5), the maximum
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Figure 4.5: (a) Lateral velocity distribution (averaged over the whole packing length) in reconstructed microchip
packings of low (ε = 0.42) and high (ε = 0.48) bed porosity at a reduced velocity of Pe = uavdp/Dm = 12. The top
right and bottom left corner regions are shown as enlargements. (b) One-dimensional velocity distribution in the top
right channel corner for both packings taken along the arrow indicated in the images above. Dashed vertical lines denote
maxima in the velocity distributions.

fluid velocity in the high-porosity corners increases accordingly to maintain the average velocity
across the channel. The relative increase is highest where the most void space is available, i.e.,
in the upper right corner of the reconstructed channel. Local velocity oscillations are analyzed
in Figure 4.5b which shows the one-dimensional velocity distribution (averaged over the whole
packing length) along the channel’s diagonal in the upper right corner region for both packings.
Oscillations in local velocity in the polydisperse packings are restricted mainly to the actual corner
region, while second and third maxima are very weakly pronounced.

4.4.4 Hydrodynamic dispersion
Figure 4.6a shows the efficiency of the reconstructed microchip packings as the dependence of the
normalized axial dispersion coefficient from the average velocity for up to Pe = 140. The slope of
the curves increases with increasing bed porosity, most notably at higher flow velocities, but the
relative increase in the slope at increasing bed porosity decreases. The packings with bed porosities
of ε = 0.46 and ε = 0.48 differ only slightly in their slope, while the slope of the curve representing
the lowest bed porosity packing (ε = 0.42) is decidedly smaller than that of the other curves. This
behavior is expected for at least two reasons. First, Taylor dispersion on the interparticle pore level
is higher in a less densely packed bed, simply because the average interparticle pore size in the core
region increases (cf. Figure 4.3). Second, and most important for the reconstructed conduit cross
section of this work, the critical corner regions are expanding as the packing density decreases.
It includes not only the immediate void space directly in the corners which is unaccessed by the
packing particles but rather covers a region in the corner and along the adjoining walls in which
a porosity and velocity heterogeneity with respect to the core region persists (Figures 4.3 and
4.5). The corner and wall regions act as more permeable flow paths parallel to the more densely
packed core region (parallel combination of unequal resistances) over the entire length of the bed.
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Figure 4.6: (a) Normalized asymptotic axial dispersion coefficients Dax/Dm as a function of the Péclet number (Pe =
uavdp/Dm) for the reconstructed microchip packings. Average values of Dax/Dm were calculated from all five packings
of a given bed porosity. (b) Comparison of axial dispersion in the reconstructed microchip packings with experimental
data from HPLC/UV-microchips. Experimental data were duplicated with microchips slurry-packed under the indicated
conditions, and each value of Dax/Dm is the average of three measurements. Relative standard deviations of simulated
and experimental data are between 3 and 5%.

Therefore, this macroscopic flow heterogeneity engenders mass transport resistance in the mobile
phase, in dependence of the packing density, over relatively long distances (covering the whole
conduit cross section), see Chapter 2 and works of Ehlert et al.254 and Broeckhoven et al.273

The ratio between the nomalized axial dispersion coefficients of the highest (ε = 0.48) and
lowest bed porosity packings (ε = 0.42) is ∼1.5 and nearly independent of Pe (Figure 4.6a). The
value for this ratio is significantly smaller than the corresponding values calculated previously for
monodisperse packings in all investigated (cylindrical and noncylindrical) geometries (Chapter 2).
Several factors contribute to the observed decrease in the efficiency ratio between high and low
bed porosity packings: i) the particle-aspect (channel-to-particle size) ratio, ii) monodisperse vs
polydisperse packings, and iii) the irregular angles present in the microchip channel. The first two
issues concern the geometrical wall effect. In particulate packings, the confining wall exerts an
ordering effect on the particles positioned in the vicinity of the wall.42,235 Monodisperse packings
(regardless of conduit shape) consist of a highly ordered wall region, with high porosity fluctuations
over a distance of 4–5 dp from the wall, and a random, densely packed core region. The first particle
layer of the bed in contact with the wall is not only highly ordered but differs from subsequent layers,
because the interstitial space between the wall and the first layer cannot be partially occupied by
other particles. Subsequent particle layers toward the center of the packing do not retain this level
of order, so that the degree of randomness increases with the distance from the wall.

In monodisperse packings with a particle-aspect ratio ≤ 10, the relative extension of the
wall region is much larger than the core size, so that porosity fluctuations persist over the whole
cross section (Chapters 2 and 3). As we have already seen in Figure 4.3, the geometrical wall

273 K. Broeckhoven and G. Desmet. J. Chromatogr. A, 1172: 25–39, 2007.
42 R. S. Maier et al. Phys. Fluids, 15: 3795–3815, 2003.

235 A. de Klerk. AIChE J., 49: 2022–2029, 2003.
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effect in the presented polydisperse packings is limited to a distance of ∼ 3.5 dp(Nmax) from the
corner, because the sizevariation of the particles strongly damps the porosity oscillations.247 The
relative extension of the random, densely packed core is here much larger as in the previously
simulated monodisperse packings (Chapters 2 and 3). A third factor is the irregular shape of the
channel corners, which allows only a tiny fraction of particles to occupy corner positions, as seen in
Figure 4.4. The inequality of the four channel corners also introduces a divergent behavior of the
local fluid velocity, i.e., the high velocity regions in all of the channel corners expand at increased
bed porosity, but the maximum fluid velocity decreases in three of the corners. In summary, both
the polydispersity of the particles and the actual cross-sectional shape of the channel contribute
to a lessened influence of the bed porosity on the efficiency of the packing. Nevertheless, the
improved efficiency of a packing with low bed porosity, particularly at higher flow velocities, is still
so significant as to necessitate the effort of achieving high-quality, dense microchip packings.

Figure 4.6b compares simulated axial dispersion coefficients for the reconstructed microchip
packings with experimental data from HPLC/UV-microchip packings for Pe < 20. Experimental
data were determined with microchip packings fabricated under the indicated conditions and re-
sulting in the given interparticle porosities (see Experimental Section and References [254] and
[103] for further details). Simulated dispersion data genuinely reflect the general form of the
experimental curves as well as the influence of interparticle porosity (packing density). In abso-
lute values, experimental dispersion coefficients are generally higher than simulated data for the
high bed porosity packings (ε = 0.48). This is to be expected, because experimental separation
efficiencies contain additional mass transfer resistances absent in the simulated packings. First, the
porosity of the real-life particles contributes to axial dispersion because transport of analytes in
the intraparticle stagnant mobile phase is diffusion-limited. Second, the pentylbenzene tracer is
moderately retained on the real-life microchip packings under the experimental conditions. While
these intraparticle mass transfer resistances add only little dispersion to the processes occurring
within the flowing mobile phase outside the particles at the low velocities analyzed in Figure 4.6b
(Pe < 20),262,274,275 experimental dispersion should nevertheless be higher than simulated disper-
sion.

For the low bed porosity packings (ε = 0.42), however, experimental dispersion coefficients
are lower than simulated data. A clue for the explanation of this surprising result is given in Fig-
ure 4.7, which contains SEM images of random vertical cuts through HPLC/UV-microchip packings
with interparticle porosities of ε = 0.42 alongside random vertical slices through the reconstructed
microchip packing with ε = 0.42. Shown is the upper right corner region of the packed microchan-
nel. Although the inevitable distortions from the cutting process, like additional surface roughness
of the channel wall or displacement of particles, are visible in the SEM images, it is obvious that
particles do actually occupy corner positions, in contrast to the simulated packings, where only
very rarely a particle is situated directly in the corner. As the nearly empty channel corners and
adjacent loosely packed regions are the main source of axial dispersion in the simulated packings,

247 D. Hlushkou, A. Seidel-Morgenstern, and U. Tallarek. Langmuir, 21: 6097–6112, 2005.
262 D. Kandhai et al. Phys. Rev. Lett., 88: 234501, 2002.
274 J. H. Knox. J. Chromatogr. A, 831: 3–15, 1999.
275 J. H. Knox. J. Chromatogr. A, 960: 7–18, 2002.
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Figure 4.7: Comparison of packing structure in the upper right channel corner of reconstructed and HPLC/UV-microchip
packings (ε = 0.42). Reconstructed packings are represented by slices of ∼ 2dp(Nmax) thickness, taken at random
intervals along the packing length. SEM images of HPLC/UV-microchip packings were obtained from cutting orthogonally
to the separation channel length. Note that the cutting process introduces additional surface roughness to the channel
walls.

band broadening in the real-life microchip packings is lower because of their more densely packed
channel corners.

This is probably enabled by a certain flexibility of the relatively soft polymeric channel walls
(compared to glass or stainless steel) under the enforced packing conditions. While the pressure
drop over even the most densely packed HPLC/UV-microchip channels did not exceed 70 bar for
the range of velocities in Figure 4.6b and we did not observe any sign of microchannel deformation
(“column breathing”) during operation, e.g., in the pressure drop–flow rate characteristics, the
residence times of the deadtime marker, or in separation efficiencies, the application of much higher
pressure (300 bar) and ultrasound required for the best microchip packings (ε = 0.42) may induce
channel deformation during the packing process, which in turn allows particles better access to
the channel corners.103,254 Unfortunately, conduit wall flexibility and the influence of ultrasound
on the packing process are not incorporated into the current packing generation algorithms. Also,
the simulation of the comprehensive slurry packing process including interparticle forces remains
a future challenge. Despite these limitations, the simulated data genuinely reflect the general
dispersion behavior of the real-life HPLC-microchip packings.

4.5 Conclusions
In this study, flow and transport in reconstructed microchip packings were analyzed with quan-
titative numerical simulation methods. The presented work is a succession and an advancement
of previous numerical simulation studies of hydrodynamic dispersion in noncylindrical sphere
packings at low particle-aspect ratios (Chapters 2 and 3). Novel aspects were introduced by recon-
structing real-life HPLC-microchip packings with regard to the exact cross-sectional geometry of
the separation channel, including the irregularly shaped corners that result from the fabrication
process, the particle-size distribution of the packing material, and the average interparticle porosity
of the packings (packing density).
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Calculation of asymptotic axial dispersion coefficients at reduced velocities of up to Pe = 140

translated to a large-scale simulation of packings containing ∼ 330 000 polydisperse spherical
particles at bed porosities between ε = 0.42 and ε = 0.48. The lateral porosity distribution in the
reconstructed microchip packings reveals a highly ordered, high porosity wall region and a random,
densely packed core. Compared to monodisperse packings regardless of conduit geometry, however,
the geometrical wall effect is strongly damped, i.e., the porosity oscillations near the channel wall
are smaller in amplitude and decay over a shorter distance and differences in the lateral porosity
distribution between packings of different bed porosity are less enhanced.

The restricted, irregularly shaped space in the channel corners exercises an ordering effect on
the position of particles in the corner region. The higher the restriction of corner space, the higher
the ordering effect. Particle centers in the near-corner regions accumulate along the cross-sectional
diagonals, while the actual corner space is nearly empty. Only a handful of particles with smaller
than average diameter can be found in the corners, despite the fact that more small-diameter
particles would be available to occupy the corner positions. The channel corners are locations
of advanced fluid flow, and these high porosity and high velocity corner regions expand with
increasing bed porosity of the packing, just as in noncylindrical monodisperse packings. However,
at decreasing bed porosity, the largest change in local porosity occurs in the core region, because
the irregularly shaped channel corners cannot be packed as densely as the orthogonal corners of,
e.g., rectangular conduits, and so there is a lower limit for the local porosity in the corner regions.
Accordingly, the fluid velocity in the core region decreases in a larger amount at decreasing bed
porosity, and to maintain the constant fluid velocity averaged over the whole cross section, the
maximum fluid velocity in the corners increases. Only the lower left corner (cf. Figure 4.3–4.5),
which has the smallest aberration from regular shape and can be packed better than the other
three corners, displays a decrease of maximum fluid velocity at decreased bed porosity (increasing
packing density).

Axial dispersion coefficients were calculated for reduced velocities of up to Pe = 140. The
efficiencies of the reconstructed microchip packings reflect the reduced influence of bed porosity
in polydisperse compared to noncylindrical monodisperse packings but at the same time indicate
the superior performance of the low-bed porosity packing (ε = 0.42) at higher flow velocities.
This underlines the importance of achieving high-quality, dense microchip packings. The compari-
son of simulated dispersion data with experimental separation efficiencies of HPLC/UV-microchip
packings has shown good agreement. Surprisingly, axial dispersion in the best HPLC/UV-microchip
packings (ε = 0.42) was lower than in the comparable reconstructed packings. Because dispersion
in the simulated packings is mainly caused by the highporosity and high-velocity corner regions,
it was assumed that the local porosity in the corners of the HPLC/UV-microchip packings is lower
than in the reconstructed packings. SEM images of cuts through HPLC/UV-microchip packings in-
deed revealed densely packed channel corners. A possible explanation is the side-wall flexibility of
the polyimide channel at the applied packing pressure. Ultrasound, which has been demonstrated
to be a crucial factor in achieving dense packings,254 will also contribute toward a denser packing
in the corner regions. This observation underlines the importance of developing advanced packing
algorithms as well as of reconstructing real-life packings in detail by suitable microscopic methods.





Chapter 5

Time and length scales
of hydrodynamic dispersion

This chapter discusses length scales of heterogeneity persisting in periodic (bulk) and confined
cylindrical sphere packings. The length scales are studied by the analysis of time evolution of
the hydrodynamic dispersion coefficient. Hydrodynamic dispersion is simulated within the broad
range of Péclet numbers (reduced velocities) until the close-to-asymptotic behavior is observed,
and resulting dispersion values are fitted to the generalized Giddings equation; the value of fitted
coefficients of each individual term of the Giddings equation demonstrate good agreement with
the Giddings’ estimates. To our knowledge, this is the first systematic resolving of the individual
contributions of generalized Giddings equation derived more than fifty years ago. Results presented
in this chapter were published in the journal Analytical Chemistry in 2009.40

5.1 Introduction
An analyte zone migrating through a chromatographic bed is dispersed in longitudinal and trans-
verse directions (parallel and perpendicular, respectively, with respect to the macroscopic flow
direction) by a combination of diffusive and convective processes. When a streamlet of the mobile
phase hits a solid obstacle, e.g., a support particle of the chromatographic bed, it splits into sev-
eral, unequal streamlets which flow around the obstacle and merge with other streamlets coming
from neighboring obstacles. Convective dispersion in transverse direction in a particulate bed
is caused by this stream splitting mechanism, whereas longitudinal dispersion originates in the
point-to-point differences of the flow velocity that exist over the column cross section.166 The flow
pattern of a fluid undergoing laminar flow in a particulate bed depends on the morphology (i.e.,
the topology and geometry) of the pore space available for the flow so that the inherent structural
heterogeneity of the packed bed sensitively influences time and length scales which characterize
velocity fluctuations in the mobile phase.89,131,145,276

40 S. Khirevich et al. Anal. Chem., 81: 7057–7066, 2009.
166 J. M. P. Q. Delgado. Heat Mass Transfer, 42: 279–310, 2006.
89 J. Bear. Dynamics of fluids in porous media. Dover Publications, 1988.

131 J. C. Giddings. Dynamics of chromatography: principles and theory. Marcel Dekker, 1965.
145 D. L. Koch and J. F. Brady. J. Fluid Mech., 154: 399–427, 1985.
276 S. G. Weber and P. W. Carr. In: High Performance Liquid Chromatography. P. R. Brown and R. A. Hartwick, eds.

Chap. 1. John Wiley & Sons, 1989.
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Figure 5.1: Definitions, locations, and scales of the different velocity inhomogeneities contributing to eddy dispersion
according to Giddings.131

In a chromatographic bed the anastomosis of the pore space causes important and rapid
changes in the mobile phase velocity. An analyte molecule caught in a fast stream path (i.e.,
moving at a local velocity higher than the average mobile phase velocity) literally takes a step
forward with respect to the center of the zone. This can change either because the velocity of
the particular stream path decreases (due to the complexity of the pore network, velocities at
different positions along a given stream path are unrelated) or because the molecule transfers
by diffusion to another stream path. Thus, diffusion relaxes transverse concentration gradients
that arise from inequalities in the local flow velocity. Lateral diffusion in the new streamlets
and a succession of similar events at each particle encountered promote transverse dispersion.
The average width of streamlets in a packed particulate bed is much smaller than one particle
diameter so that local transverse homogenization of the mobile phase composition takes place
quickly. Homogenization at the scale of the column diameter, however, is much slower. This implies
that at least two fundamental length and time scales exist for eddy dispersion and the associated
transverse equilibration between different velocities of the flow field in a confined chromatographic
bed: the pore (shorttime) scale and the confinement or transcolumn (long-time) scale.42

Giddings131 has divided the local velocity inequalities inside a confined particulate bed that
contribute to eddy dispersion into the following categories illustrated in Figure 5.1: (1) The

42 R. S. Maier et al. Phys. Fluids, 15: 3795–3815, 2003.
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transchannel contribution arises from the transverse distribution of velocities inside each individual
channel between particles. It resembles the Hagen–Poiseuille flow profile in a cylindrical tube,
though channels in a packed bed have a much more complicated geometry and flow velocity
distribution. (2) The short-range interchannel contribution is due to the existence of small groups of
tightly packed particles between which more loosely packed regions are found. (3) Fluctuations of
local packing density cause this pattern of tightly packed groups of particles interspersed by loosely
packed regions to be erratic, which results in the long-range interchannel contribution. (4) The
existence of systematic variations of the mobile phase velocity between different regions of the
column, i.e., in the core and the wall regions, is responsible for the transcolumn contribution. A fifth
contribution mentioned by Giddings131 as a source of velocity bias is the transparticle contribution,
which exists in beds of porous particles. This effect should not be taken into account as an eddy
dispersion term, however, as it is actually the strict equivalent of the pore diffusion mechanism.277

The flowing mobile phase does not affect pore diffusion inside the particles. The intraparticle fluid
velocity is zero (stagnant mobile phase), as only transfer by diffusion allows the solute molecules
to penetrate or leave the particles.278

The influence of transcolumn velocity gradients of various origins on the separation efficiency
in liquid chromatography is well-known,279,280 but the precise nature of how the microstructure
of a packed bed and the geometry of the confinement affect the flow heterogeneity, transverse
equilibration as well as the macroscopically resulting longitudinal dispersion, and how it inter-
relates with the velocity-dependent transverse rate of mass transport is still largely unresolved.
This topic has been addressed over the past decades in the engineering166 and chromatographic
communities261,281–283 which operate with packed beds. There is a general consensus that mea-
surements of transverse dispersion are moredifficult to perform than the analysis of the far easier
accessible longitudinal dispersion data.

Numerical simulations of flow and transport in sphere packings are particularly suited to the
challenge of investigating the central structure–transport relationships in chromatographic media,
because this approach allows us to systematically study relevant parameters such as the shape
and average size of the particles, the particle size distribution, inter- and intraparticle porosities,
as well as the column dimensions and cross-sectional geometry.19,42,99,180,262,284 Longitudinal and
transverse dispersion can be studied simultaneously in the same packings, thereby quantifying
time and length scales required for the attainment of asymptotic dispersion behavior and providing

277 F. Gritti and G. Guiochon. Anal. Chem., 78: 5329–5347, 2006.
278 U. Tallarek, F. J. Vergeldt, and H. Van As. J. Phys. Chem. B, 103: 7654–7664, 1999.
279 G. Guiochon. J. Chromatogr. A, 1126: 6–49, 2006.
280 K. Broeckhoven and G. Desmet. J. Chromatogr. A, 1216: 1325–1337, 2009.
261 U. Tallarek, E. Bayer, and G. Guiochon. J. Am. Chem. Soc., 120: 1494–1505, 1998.
281 J. H. Knox, G. R. Laird, and P. A. Raven. J. Chromatogr., 122: 129–145, 1976.
282 C. H. Eon. J. Chromatogr., 149: 29–42, 1978.
283 R. A. Shalliker, B. S. Broyles, and G. Guiochon. J. Chromatogr. A, 994: 1–12, 2003.
19 B. Manz, L. F. Gladden, and P. B. Warren. AIChE J., 45: 1845–1854, 1999.
99 D. Coelho, J.-F. Thovert, and P. M. Adler. Phys. Rev. E, 55: 1959–1978, 1997.

180 R. S. Maier, D. M. Kroll, and H. T. Davis. AIChE J., 53: 527–530, 2007.
262 D. Kandhai et al. Phys. Rev. Lett., 88: 234501, 2002.
284 S. Stapf et al. Phys. Rev. E, 58: 6206–6221, 1998.
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correlations for the dependence of dispersion coefficients on the average mobile phase velocity.
Because all dispersion data are referenced to a particular type of packing and are unbiased by
extracolumn contributions, the numerical simulations approach establishes a systematic route
toward quantitative structure–transport relationships.

In this work we resolve time and length scales as well as the magnitude of individual contri-
butions to eddy dispersion in chromatographic beds. We address this issue by a high-resolution
numerical analysis of flow and mass transport in computer-generated bulk (unconfined) and com-
plementary confined cylindrical packings of monosized, nonporous, incompressible, spherical parti-
cles. The complementary analysis of bulk packings (which mimic infinitely wide, randomly packed
beds without walls) and packings confined in the conventional cylindrical column format is of high
diagnostic value, because contributions to eddy dispersion associated with widely differing time
and length scales, from the individual pore (transchannel) scale in a bulk packing to the transcol-
umn equilibration in confined packings, can be approached individually with the best possible
precision.

5.2 Analysis of dispersion
In chromatography the height equivalent to a theoretical plate (HETP, H) is defined as the slope of
the dependence of the variance of a band (σ) on the migration distance. In a first approximation,
assuming a homogeneous column and an incompressible mobile phase, this slope, and hence
the HETP, is constant along the column. A similar definition applies to band broadening in the
longitudinal (z) direction, i.e., parallel to the macroscopic flow velocity and in the transverse
direction. The longitudinal and transverse dispersion coefficients (DL andDT, respectively) usually
discussed in the engineering literature166 are related to the corresponding chromatographic plate
heights HL and HT by131

DL =
HLuav

2
=
hLνDm

2
=
uav

2

∂σ2
L

∂z
, (5.1a)
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2
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2

∂σ2
T

∂z
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Here, h = H/dp denotes the reduced plate height and ν is the reduced velocity (or particle Péclet
number, Pe) defined as ν ≡ Pe = uavdp/Dm, where uav is the average mobile phase velocity
through the packed bed, Dm the solute diffusivity in the mobile phase, and dp the average diameter
of the spherical support particles.

By applying the random walk relationship to a model of eddy dispersion incorporating the
coupling between transverse diffusion and spatial velocity fluctuations, Giddings131 developed a
plate height equation by analogy to parallel conductors. The comprehensive equation for hL = f(ν)

is

hL =
HL

dp

=
b

ν
+

4∑
i=1

2λi
1 + (2λi/ωi)ν−1

+ cν. (5.2)



5.2 Analysis of dispersion 97

The first term on the right-hand side of equation (5.2) (b/ν) accounts for the effect of longitudi-
nal molecular diffusion in the packed bed driven by the concentration gradient along the zone
profile.277,285 The second term in equation (5.2) describes eddy dispersion as the sum of the four con-
tributions (Figure 5.1) used to model the erratic mass transfer by flow and diffusion between the
interparticle pores of the packing on different length scales (transchannel, short-range interchan-
nel, long-range interchannel, transcolumn), where λi and ωi are universal structural parameters
characteristic of each contribution and the ratio ν1/2 = 2λi/ωi is a reduced transition velocity for
each type of velocity disparity.131 It is the velocity at which the corresponding plate height term
reaches half of its limiting value and thereafter begins to flatten noticeably.286 The last term in
equation (5.2) (cν) accounts for the mass transfer kinetics from the bulk solution into and across
the particles.287,288

In an attempt to find a simple equivalent to the generalized Giddings equation (5.2), Knox
has derived the most popular plate height equation,274 in which the different contributions to eddy
dispersion as proposed by Giddings are pooled into one empirical term. Considering a number of
experimental data sets, the following equation was found to provide a good empirical correlation:

hL =
b

ν
+ aνn + cν, (5.3)

where n is between 0.2 and 0.35 and most often taken as one-third in the chromatographic literature.
The famous van Deemter equation289 corresponds to equation (5.3) with n = 0; hence, the eddy
dispersion term is constant. The Knox equation (5.3) has been widely used in the literature. It
explains reasonably well most experimental data around the plate height minimum, which is in part
due to the narrow range of reduced velocities within which most of these data have been acquired.
In most cases, experimental correlations were studied in the range of 1 ≤ ν ≤ 20–40, which is
barely sufficient for an accurate estimate of the eddy dispersion coefficient (a in equation (5.3)).
Further, estimates obtained for b and/or c are often poorly precise.

While Knox has focused on the magnitude of eddy dispersion,274 a deeper understanding of that
phenomenon aiding in the systematic optimization of packing processes and particle characteristics
can only be gained as the details of its origin are analyzed and broken down into its component
parts. In this respect, Giddings’ coupling theory of eddy dispersion is the most rigorous approach
available and provides physical insight into the parameters involved in the description of the eddy
dispersion term (λi and ωi in equation (5.2)). However, his division of the column on the basis
of the average size of a few selected subdomains is empirical. Although the transchannel and
a more or less complex transcolumn equilibration are certainly intrinsic to the morphology of
any confined packing, the short-range and long-range interchannel contributions are difficult to
assess or quantify even. The latter two contributions will be highly dependent on the particle

285 K. Broeckhoven et al. J. Chromatogr. A, 1188: 189–198, 2008.
286 J. C. Giddings. Nature, 184: 357–358, 1959.
287 K. Miyabe and G. Guiochon. J. Sep. Sci., 26: 155–173, 2003.
288 G. Desmet and K. Broeckhoven. Anal. Chem., 80: 8076–8088, 2008.
274 J. H. Knox. J. Chromatogr. A, 831: 3–15, 1999.
289 J. J. van Deemter, F. J. Zuiderweg, and A. Klinkenberg. Chem. Eng. Sci., 5: 271–289, 1956.
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shape and size distribution and the specific column packing procedure used. Wall effects from
the confinement which strongly influence the transcolumn contribution are similarly sensitive
to the packing method and particle characteristics and also depend on the column-to-particle
diameter ratio.238 It is therefore not clear which of the four biases of the eddy dispersion term
in equation (5.2) should be omitted depending on the experimental conditions or under what
conditions the contribution of eddy dispersion to band broadening can be reduced to one term.

To our knowledge the challenge of resolving systematically, either experimentally or by means
of suitable simulations, the different structural parameters characteristic of each contribution to the
eddy dispersion term of the comprehensive Giddings equation ((5.2)) has never been undertaken.
Investigations which have been conducted in this direction in the past with packed beds132,261,275,290

are all in favor of Giddings’ coupling theory of eddy dispersion, but the analysis remained limited
to the “simple” Giddings equation, i.e., equation (5.2) with i = 1.

The choice of packings and operating conditions in our numerical analysis approach facilitates
the focus on eddy dispersion and its precise dependence on the morphology of the packed bed.
The selection of perfectly monosized, spherical particles allows the strict operation with reduced
parameters (hL = HL/dp and ν = uavdp/Dm) without the influence of the particle size distribution
and particle shape. The use of nonporous support particles and inert conditions (nonadsorbing,
nonreacting tracer particles) eliminates mass transfer resistance contributions (c = 0 in equa-
tion (5.2)).275,290 Although it has sometimes been claimed that even with solid particles and un-
retained tracers a remaining c-term in equation (5.2) is needed (to account for pore-scale Taylor
dispersion), we like to emphasize that this contribution is contained in the eddy dispersion term
of equation (5.2) as the transchannel contribution. In deriving equation (5.2) under most general
conditions, Giddings has absorbed all mass transfer resistances in the mobile phase (as distin-
guished from the diffusion and adsorption/desorption in the stationary phase) into the coupling
expression of equation (5.2) (cf. derivation of equation 2.11-1 on page 62 of Reference [131] and
the transition to equation 2.11-2). For the packings and conditions considered in our analysis, the
coefficient accounting for the contribution of longitudinal diffusion to the reduced plate height
in equation (5.2) is b = 2γ, where γ is the obstruction factor often used in chromatography.131,274

It is the inverse of the tortuosity factor (τ ) of the interconnected pore space usually used in the
engineering literature166 and is defined as

γ =
1

τ
=
Deff

Dm

, (5.4)

where Deff is the effective diffusion coefficient in the sphere packing, i.e., its asymptotic value
observed in the long-time limit for ν = 0.

238 R. A. Shalliker, B. S. Broyles, and G. Guiochon. J. Chromatogr. A, 888: 1–12, 2000.
132 M. R. Schure et al. Anal. Chem., 74: 6006–6016, 2002.
275 J. H. Knox. J. Chromatogr. A, 960: 7–18, 2002.
290 P. Magnico and M. Martin. J. Chromatogr., 517: 31–49, 1990.
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5.3 Numerical section
Our simulation approach consists of three consequent steps: random packing generation (and
its discretization), simulation of flow in the packing void space, and simulation of hydrodynamic
dispersion using information on the packing geometry and corresponding flow field from two
previous steps. Detailed description of the employed methods is given in Chapter 1.

Packings of solid, impermeable, spherical particles were generated by a modified Jodrey–Tory
algorithm (Section 1.1) at bed porosities (average interstitial void fraction or interparticle porosity)
of ε = 0.40 for the confined cylindrical packings and of ε = 0.378 for the bulk packings. The value of
ε = 0.378 for the bulk packings, which represents random-close packing, matches the bed porosity
in the randomly packed core region of the confined cylindrical packings. Confined packings are
characterized by a cylinder-to-particle diameter ratio of dc/dp = 20. Bulk packings contained 8300

spheres and had a dimension of 10×10×68.27 d3
p (in x-, y-, and z-direction, respectively), whereas

confined cylindrical packings contained 2.4×106 spheres and had a dimension of 20×20×6553.6 d3
p.

The grid resolution was chosen as 30 nodes per dp, sufficient for the accurate simulation of fluid flow
and dispersion (see Subsections 1.3.5 and 1.4.6). Final dimensions of the lattice (computational
domain containing the packings) were 300 × 300 × 2048 nodes for the bulk packings and 600 ×
600 × 196 608 for the confined cylindrical packings. For each type of packing five different initial
random positions of particle centers (seeds) were used, resulting in a total of 10 generated random
sphere packings. The transient dispersion curves (Figures 5.3 and 5.5) and plots of hL = f(ν) in
Figures 5.4 and 5.6 represent the average values calculated from all five packings of a given type.

The lattice Boltzmann method (Section 1.3) was used for the simulation of low Reynolds-
number flow of an incompressible fluid within the interparticle pore space of the generated pack-
ings. For the computational domain described above, we employed a D3Q19 model, resulting in
lattice sizes of ∼13 GB for a bulk packing and ∼5 TB for a confined cylindrical packing. The no-slip
boundary condition at the solid–liquid interfaces of the cylinder inner surface and the solid parti-
cles was realized by the “bounce-back” scheme. Periodic boundary conditions were used along the
z-axis of the confined cylindrical packings and in all directions for the bulk packings.

The simulation of one fluid flow velocity field in a confined cylindrical packing required 1500

LBM iterations, 7.2 TB memory space, and took ∼ 0.8 h on 16384 processor cores of an IBM Blue
Gene/P system, while for a bulk packing the simulation required 1500 LBM iterations, 31 GB of
memory space, and took ∼ 0.1 h on 512 processor cores. For each packing, the velocity field was
first calculated at a low reduced velocity (ν ≈ 1), from which velocity fields at values of up to
ν = 500 were then received by linear rescaling.132,291

Mass transport in the generated packings and fluid flow velocity fields was simulated by a
random walk particle tracking method (Section 1.4). Time-dependent longitudinal (DL(t)) and
transverse (DT(t)) dispersion coefficients were calculated as described in Subsection 1.4.3. Simula-
tion of dispersion in all five bulk packings (over the whole velocity range) required ∼24 h on 1024

processor cores. Dispersion in confined cylindrical packings was simulated using 8192 processor
cores and took 256 h.

291 O. Bey and G. Eigenberger. Chem. Eng. Sci., 52: 1365–1376, 1997.
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5.4 Results and discussion
Figure 5.2 shows a front view onto both types of packings investigated and illustrates the differences
in their respective lateral porosity profiles. Confined packings of monosized spheres consist of a
highly ordered wall region, with high porosity fluctuations over a distance of 4–5 dp from the wall,
and a random, densely packed core region.42,234–237,247 These porosity oscillations result from the
inability of the hard spheres to form a close packing against the hard surface of the cylindrical
column as particles can touch, but not penetrate, the wall. The first particle layer of the bed in
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Figure 5.2: Front view onto the two types of monodisperse sphere packings studied in this chapter, together with
representative lateral porosity distributions (taken along the arrows and averaged over the whole length of the packings).
Confined packings have a cylinder-to-particle diameter ratio of dc/dp = 20, a length of 6553.6 dp, and a bed porosity of
ε = 0.40. Bulk (unconfined) packings have dimensions of 10 dp× 10 dp× 68.27 dp with periodic boundary conditions in
all directions and a bed porosity of ε = 0.378 which, as indicated by the overlaid porosity profiles, matches the porosity
of the random-close core region of the confined packings.

contact with the wall is not only highly ordered, but differs from subsequent layers, because the
interstitial space between the wall and the first layer cannot be partially occupied by other particles.
Subsequent particle layers toward the center of the column do not retain this level of order and
the degree of randomness increases with the distance from the wall. Lacking the ordering effect of
a confining wall, bulk packings show only low-level random porosity fluctuations. As visualized by
the overlaid lateral porosity profiles in Figure 5.2 (bulk, black; confined cylindrical, red), the bed
porosity of the generated bulk packings (ε = 0.378) matches the bed porosity in the core region of
the confined cylindrical packings.

234 A. J. Sederman, P. Alexander, and L. F. Gladden. Powder Technol., 117: 255–269, 2001.
235 A. de Klerk. AIChE J., 49: 2022–2029, 2003.
236 D. Tang et al. Chem. Eng. Technol., 27: 866–873, 2004.
237 J. Theuerkauf, P. Witt, and D. Schwesig. Powder Technol., 165: 92–99, 2006.
247 D. Hlushkou, A. Seidel-Morgenstern, and U. Tallarek. Langmuir, 21: 6097–6112, 2005.
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We note here for clarity that the above-described wall effect is a purely geometrical effect
existing in immediate vicinity of the column wall. This geometrical wall effect is distinct from a
second and more extended wall effect caused by friction between the particles of the bed and the
column wall,238,292,293 The latter effect is traditionally discussed in chromatography in connection
with relatively large column-to-particle diameter ratios. Here, the packing density near the wall
is higher than in the core region. The effect is related to the relatively high compressibility of
pulverulent materials and the complex distribution of axial and radial stress during compression
of the bed. The extent of this effect strongly depends on the packing procedure and operational
conditions.

The geometrical wall effect (Figure 5.2) was envisioned early in the chromatographic literatu-
re274,294 and later carefully studied by Jorgenson and co-workers with packed capillaries.239,240,295 For
example, Kennedy and Jorgenson239 and subsequently Hsieh and Jorgenson240 have demonstrated
that the performance of fused silica capillaries packed with 5 µm sized porous C18-silica particles
improves significantly with decreasing capillary inner diameter between 12 and 50 µm. At these low
aspect ratios of dc/dp ≤ 10,239,240 the core region ultimately disappears and the packing structure
is dominated by the wall region, i.e., the packing structure becomes effectively more ordered and
homogeneous over the whole cross section. In this respect, the analysis of longitudinal dispersion
in confined cylindrical sphere packings at low cylinder-to-particle diameter ratios is a topic with
a long tradition in the engineering literature,166 although the precise dependence of dispersion
on the aspect ratio and the packing length has found renewed attention.42,180,296 A closely related
diameter-dependent dispersion has also been observed in numerical studies which suggest that the
adverse influence of the geometrical wall effect on longitudinal dispersion remains significant even
at aspect ratios on the order of dc/dp = 100.180,297 In the present study, we selected an intermediate
aspect ratio (dc/dp = 20) for which the more ordered wall region and the random–close-packed
core region both have significant volume fractions. In addition, we took great care to generate
packings long enough Lbed = Lz = 6553.6 dp to enable complete transcolumn equilibration. The
truncation of dispersion data due to insufficient packed-bed length in chromatography is known
to result in artificially strong tapering-off of plate height data at higher velocities130 which, in turn,
affects the values of both λi and ωi.

5.4.1 Bulk packings
The generated bulk packings mimic infinitely wide, unconfined random sphere packings to study
hydrodynamics and eddy dispersion without the complex influence of wall effects.238 To quantify

292 G. Guiochon, E. Drumm, and D. Cherrak. J. Chromatogr. A, 835: 41–58, 1999.
293 R. A. Shalliker et al. J. Chromatogr. A, 977: 213–223, 2002.
294 J. H. Knox and J. F. Parcher. Anal. Chem., 41: 1599–1606, 1969.
239 R. T. Kennedy and J. W. Jorgenson. Anal. Chem., 61: 1128–1135, 1989.
240 S. Hsieh and J. W. Jorgenson. Anal. Chem., 68: 1212–1217, 1996.
295 K. D. Patel et al. Anal. Chem., 76: 5777–5786, 2004.
296 E. Vandre et al. AIChE J., 54: 2024–2028, 2008.
297 J. Tobis’ and D. Vortmeyer. Chem. Eng. Process., 29: 147–153, 1991.
130 D. Hlushkou and U. Tallarek. J. Chromatogr. A, 1126: 70–85, 2006.
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Figure 5.3: Development of longitudinal (a) and transverse (b) dispersion coefficients vs dimensionless transverse
dispersive time τD = 2DTt/d

2
p in bulk packings (ε = 0.378). Reduced velocities ν = uavdp/Dm (dp = 5 µm, Dm =

1.5× 10−9 m2/s) are given for each curve. Note that the values covered by DL(t)/Dm and DT(t)/Dm for the displayed
range of reduced velocities differ by one order of magnitude.

time and length scales behind the velocity heterogeneities in bulk packings we analyze the de-
velopment of longitudinal and transverse dispersion coefficients. Transient values are denoted as
DL(t) and DT(t), while the absence of the time parameter denotes time independence. Monitoring
the transient behavior of the dispersion process toward asymptotic values allows us to distinguish
between individual contributions to eddy dispersion, especially with regard to the upper limit of
the involved time and length scales. This will help to condense, where physically meaningful, the
number of scales of velocity disparity in the packing proposed by Giddings131 (cf. Figure 5.1). In
the investigated bulk packings, we expect only the transchannel and a (yet not closer defined)
short-range interchannel effect to contribute to eddy dispersion.

Parts (a) and (b) of Figure 5.3 show the development of longitudinal and transverse dispersion
coefficients, respectively, for selected values of ν = uavdp/Dm from the investigated range of
reduced velocities (0.5 ≤ ν ≤ 500). Elapsed time in Figure 5.3 has been normalized through
the transverse dispersive time τD = 2DTt/d

2
p to reveal general trends. The dispersive time unit

2DTt/d
2
p corresponds to the time span after which tracer particles are dispersed laterally by one

sphere diameter. The use of a transverse dispersive time scale is important here, because neither
pure diffusion nor pure convection determines the lateral equilibration between different velocities,
which instead would have resulted in a diffusive (τD = 2DTt/d

2
p) or a convective (τC = uavt/dp)

time scale. The use of DT(ν) in the dimensionless dispersive time scale τD reflects the combination
of flow and diffusion which is also the essence of Giddings’ coupling theory.131

Throughout the range of reduced velocities both DL(t)/Dm (Figure 5.3a) and DT(t)/Dm

(Figure 5.3b) demonstrate the attainment of asymptotic values after τD ≈ 2. First, this unique
behavior shows that the time scale for asymptotic behavior in a bulk random sphere packing is
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indeed adequately characterized by normalization with respect to the value of DT(ν), as done in
Figure 5.3. Second, the asymptotic time scale of τD = 2DTt/d

2
p ≈ 2 translates to a characteristic

average transverse dispersion length in the bulk packings 〈lT〉bulk of

〈lT〉bulk =
√

2DT(ν)t ≈
√

2 dp. (5.5)

Thus, dispersion in the bulk packings becomes asymptotic after a distance of approximately 1.4 dp

has been sampled laterally by the tracer molecules. However, the absolute time required for this
process decreases with increasing velocity due to the concomitant increase of DT(ν). For example,
at ν = 10 the asymptotic value for DT(t)/Dm is 1.38, whereas at ν = 150 this ratio has already
grown to 6.72 (Figure 5.3).

The analysis of longitudinal and transverse dispersion asymptotic time and length scales
confirms our surmise that a shortscale heterogeneity is responsible for the upper limit in the time
and length scales of eddy dispersion in the bulk packings. Although transchannel equilibration
is required in any packed bed, ordered or random, the short-scale heterogeneity observed here
on the order of 1–2 dp (equation (5.5)) is probably associated with the disorder introduced in a
random sphere packing compared to a crystal-like structure, e.g., an ordered array of spheres. For
the short-range interchannel contribution Giddings estimated a distance of ∼1.25 dp to be required
for exchanging molecules between the involved velocity extremes (page 45 in Reference [131])
This estimate compares favorably with our own characterization of a short-scale heterogeneity over
a distance of ∼1.4 dp associated with packing randomness.

Figure 5.3 also displays the difference between longitudinal and transverse dispersion curves.
Whereas longitudinal dispersion curves (Figure 5.3a) increase monotonically up to their asymptotic
values for all selected reduced velocities, transverse dispersion curves (Figure 5.3b) show a peak for
fluid velocities of ν > 10, i.e., as convection begins to dominate over diffusion. With increasing fluid
velocity the peak is shifted toward very short times τD.42,123 The form of the transverse dispersion
curves is caused by longitudinal convection which initially forces the average tracer to make
a transverse displacement on the order of dp/2 around a sphere (the obstacle). Afterward, the
tracer may either move back toward its initial transverse position or further increase its transverse
displacement, yielding a net reduction in the rate of spreading.

To summarize, the analysis of transient dispersion in the bulk packings reveals a short-range
interchannel contribution on the single-particle scale (1–2 dp) in addition to the transchannel
contribution, which intrinsically exists in any packed bed on the scale of an individual channel
between the particles (�dp). Thus, the investigated bulk packings of monosized spheres can be
characterized as random, dense (ε = 0.378), and relatively homogeneous. Structural and flow
heterogeneities beyond the documented short-range scale (cf. Figure 5.3 and equation (5.5))
cannot be resolved. This knowledge is extremely helpful in analyzing the dependence of reduced
longitudinal plate heights on the reduced velocity, hL = f(ν), using the comprehensive Giddings
equation (5.2), as it allows us to reduce the number of contributions to eddy dispersion to the
transchannel and a short-range interchannel effect (equation (5.2) with i = 2).

123 R. S. Maier et al. Phys. Fluids, 12: 2065–2079, 2000.
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Figure 5.4: Reduced longitudinal plate height hL = HL/dp vs reduced velocity ν = uavdp/Dm in the range of 0.5 ≤
ν ≤ 500 for bulk packings. Each data point represents the average from five generated packings (ε = 0.378). The inset
shows a selected velocity range 1 ≤ ν ≤ 100 of plate height data.

Thus, we use the following form of equation (5.2) to fit the dependence of reduced longitu-
dinal plate heights (calculated from the asymptotic values of DL(t)/Dm — see Figure 5.3 — via
equation (5.1a)) on the reduced velocity for the bulk packings (cf. equation 2.11-6 on page 63 of
Reference [131]):

hL =
2γ

ν
+

2λ1

1 + (2λ1/ω1)ν−1︸ ︷︷ ︸
transchannel

+
2λ2

1 + (2λ2/ω2)ν−1︸ ︷︷ ︸
short-range interchannel

, (5.6)

where index 1 refers to the transchannel contribution and index 2 to the short-range interchannel
contribution to eddy dispersion.

The dependence of hL on ν for the bulk packings (with a total of 37 values of hL over the
range of 0.5 ≤ ν ≤ 500 where each value of hL represents the average from five bulk packings
obtained from different initial seeds, but with the same final interparticle porosity of ε = 0.378)
is shown in Figure 5.4, together with the best fit of these data to equation (5.6). The condensed
Giddings equation for bulk packings (5.6) excellently fits simulated plate heights over the whole
range of reduced velocities (R2 = 0.9998). The parameters obtained from that fitting are γ = 0.64,
λ1 = 0.41, ω1 = 0.0038, λ2 = 0.223, and ω2 = 0.15. These values agree reasonably well with
Giddings’ estimation for the transchannel and short-range interchannel parameters: λ1∼0.5, ω1∼
0.01, λ2∼ 0.5, and ω2∼ 0.5.131 Concerning the remaining differences in the “universal” structural
parameters (λi and ωi) it should be noted that the exact geometrical and topological differences
between packed beds analyzed by Giddings and those studied in this work (and particularly those
encountered in chromatographic practice) are hardly known with sufficient accuracy to allow for
meaningful quantitative distinctions. distinctions. Thus, we conclude our analysis of eddy dispersion
in bulk random sphere packings with a physically consistent restraint to the transchannel and a
short-scale interchannel heterogeneity in the cross-sectional velocity distribution, as well as with a
reasonable agreement to the values of the structural parameters estimated by Giddings for these
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two contributions. Before continuing and comparing the results with those for confined cylindrical
packings, several aspects should be mentioned about the analysis conducted so far.

First, the value of γ = Deff(t)/Dm = 0.64 for fixed beds of monosized spheres with an interpar-
ticle porosity of ε = 0.378, obtained by fitting the hL = f(ν) data in Figure 5.4 to equation (5.6),
agrees very well with data reported for similar systems.298,299 Further, we observed a value of
γ = 0.64 also independently by monitoring the long-time (tortuosity) limit of the diffusion co-
efficient Deff in the bulk packings (equation (5.4)), analogous to DL(t)/Dm in Figure 5.3a but
for γ = 0. This demonstrates that sufficient plate height data were simulated at low velocities
(20 values of hL in the range of 0.5 ≤ ν ≤ 10, cf. inset in Figure 5.4) where the contribution of
molecular diffusion to longitudinal dispersion is important.

Second, by examining the above-determined structural parameters (λi and ωi) we identify the
short-range interchannel effect as being responsible for a convex bending of the eddy dispersion
curve at low velocities, whereas the transchannel effect causes the eddy dispersion curve (and
overall plate height data) to taper off at high velocities. This can easily be understood by calculating
the transition velocities ν1/2 = 2λi/ωi for each contribution to eddy dispersion at which the plate
height term reaches half of its limiting value and thereafter begins to flatten noticeably.286 We
obtain ν1/2 = 215 for the transchannel effect and ν1/2 = 3 for the short-range interchannel effect.
The values provided by Giddings are 100 and 2, respectively.131 Where ν1/2 is large (transchannel
effect) the contribution to the reduced plate height continues to increase with the velocity over
a significant range of the plot in Figure 5.4, the same as for an ordinary kinetics or mass transfer
velocity proportional term, whereas the plate height contribution of the short-range interchannel
effect reaches its plateau at relatively low velocities. We will return to the consequences of the
widely disparate transition velocities for the individual contributions to eddy dispersion with the
analysis of the plate height data for the confined packings.

5.4.2 Confined cylindrical packings
The transient behavior of longitudinal and transverse dispersion coefficients toward asymptotic val-
ues was monitored for the confined cylindrical packings, expecting an additional transcolumn con-
tribution to eddy dispersion. Figure 5.5 shows the development of DL/Dm and DT/Dm (Figure 5.5,
parts (a) and (b), respectively) for a few selected values of ν = uavdp/Dm from the investigated
range of reduced velocities (here 0.1 ≤ ν ≤ 500). Elapsed time in Figure 5.5 has again been nor-
malized through the transverse dispersive time τD = 2DTt/d

2
p, with the value for DT(ν) taken from

the bulk packings. Several aspects are immediately apparent when comparing Figure 5.5 (confined
cylindrical packings) to Figure 5.3 (bulk packings). First, the longitudinal dispersion curves have
the same form, but the time scale for asymptotic longitudinal dispersion in the confined packings is
significantly larger than for the bulk packings. Second, transverse dispersion curves in the confined
packings decrease to zero, on a time scale ca. 4 times longer than it takes to reach asymptotic
longitudinal dispersion.

298 L. L. Latour et al. J. Magn. Reson., Ser. A, 101: 342–346, 1993.
299 J. M. Zalc, S. C. Reyes, and E. Iglesia. Chem. Eng. Sci., 59: 2947–2960, 2004.
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Figure 5.5: Development of longitudinal (a) and transverse (b) dispersion coefficients vs dimensionless transverse
dispersive time τD = 2DTt/d

2
p in confined cylindrical packings (cf. Figure 5.2) with ε = 0.40. Reduced velocities

ν = uavdp/Dm (dp = 5 µm, Dm = 1.5× 10−9 m2/s) are given for each curve. The inset shows DT/Dm for ν = 10 and
20 at short times.

Throughout the covered range of reduced velocities the longitudinal dispersion data DT/Dm

(Figure 5.5a) demonstrate the attainment of asymptotic values at τD ∼ 100, corresponding to a
characteristic average transverse dispersion length in the confined packings 〈lT〉confined,L of

〈lT〉confined,L =
√

2DT(ν)t ≈ 10dp ≡
dc

2
. (5.7)

This result clearly demonstrates that the macroscopic flow heterogeneity caused by the cylindrical
confinement of the sphere packing adds a transcolumn contribution to eddy dispersion, which —
due to the cylindrical symmetry — requires a lateral equilibration on the scale of the cylinder
radius (dc/2). The observed asymptotic time scale of t ≈ (dc/2)2/2DT(ν) for longitudinal dis-
persion is reminiscent of classical Taylor–Aris dispersion in laminar (Poiseuille) flow through
an unpacked cylindrical column (open tube), where the asymptotic time scale is proportional to
t ≈ (dc/2)2/2Dm.276

Transverse asymptotic dispersion is observed after τD = 2DTt/d
2
p ≈ 400 (Figure 5.5b) which

translates to a characteristic average transverse dispersion length in the confined cylindrical pack-
ings 〈lT〉confined,T of

〈lT〉confined,T =
√

2DT(ν)t ≈ 20dp ≡ dc. (5.8)

This result is not surprising because the cylindrical confinement of the sphere packing imposes
limits on the lateral displacements of the tracer particles. Tracer particles on their journey laterally
through the sphere packings are bounced back from the cylinder wall. This implies that transverse
dispersion has decayed to zero after the time t ≈ (dc)

2/2DT(ν) has elapsed (Figure 5.5b), i.e., the



5.4 Results and discussion 107

asymptotic time scale for the confined cylindrical packings is 22 times larger in transverse than in
longitudinal direction. It should be mentioned here that compared to the work of Jorgenson and
co-workers239,240,295 with packed capillaries and to the situation in nano-HPLC in general, where
the ratio of packed bed length to column diameter is typically on the order of thousands, most
HPLC separations which involve larger column diameters, but also analytical and narrow-bore
HPLC separations, are carried out under nonequilibrium conditions where the analyte residence
times in a column are insufficient to fully relax transcolumn contributions to eddy dispersion.
Thus, the complete dynamic process illustrated in detail in Figure 5.5 is usually truncated (i.e., the
asymptotic longitudinal dispersion coefficient or plate height cannot be achieved) and it may be
incorrectly concluded that wall effects are absent.

The preceding analysis of transient dispersion (Figures 5.3 and 5.5) demonstrates that, in
addition to the transchannel and the short-range interchannel contributions to eddy dispersion
identified for the bulk packings, a transcolumn contribution term needs to be added to the reduced
plate height equation hL = f(ν) for the confined packings:

hL =
2γ

ν
+

2λ1

1 + (2λ1/ω1)ν−1︸ ︷︷ ︸
transchannel

+
2λ2

1 + (2λ2/ω2)ν−1︸ ︷︷ ︸
short-range interchannel

+
2λ1

1 + (2λ1/ω1)ν−1︸ ︷︷ ︸
transcolumn

. (5.9)

The dependence of hL on ν for the confined packings (with a total of 41 values of hL over the
range of 0.1 ≤ ν ≤ 500, where each value of hL represents the average from five confined packings
obtained from different initial seeds, but with the same final interparticle porosity of ε = 0.40)
is shown in Figure 5.6, together with the best fit of these data to equation (5.9). For a better
analysis of the wall effect in the confined packings, we limited the number of unknown parameters
in equation (5.9) by using the values λ1 and ω1 for the transchannel contribution as obtained
for the bulk packings. This is a valid first approximation because the transchannel contribution
appears to be the most “universal” eddy dispersion contribution which is expected to show the
least variations between different packings of similar packing density and composed of identical
particles. The short-range interchannel and transcolumn contributions, by contrast, are far more
difficult, if possible at all, to generalize.

As seen in Figure 5.6, the comprehensive Giddings equation for the confined packings (5.9)
excellently fits simulated plate heights over the whole range of reduced velocities (R2 = 0.9996).
The parameters obtained from that fitting are γ = 0.67, λ1 ≡ 0.41, ω1 ≡ 0.0038, λ2 = 0.86,
ω2 = 0.436, λ3 = 2.61, and ω3 = 0.023. The value obtained for γ can be explained by the slightly
higher bed porosity of the confined (ε = 0.40, γ = 0.67) compared to the bulk packings (ε = 0.378,
γ = 0.64). A very similar value of γ = 0.66 was obtained independently via equation (5.4)
by monitoring the long-time (tortuosity) limit of the diffusion coefficient Deff in the confined
packings, analogous to DL(t)/Dm in Figure 5.5a but for ν = 0. In comparison to the bulk packings
the dramatic influence of the cylindrical confinement on packing microstructure (Figure 5.2), the
resulting macroscopic flow heterogeneity, and the associated transcolumn equilibration behind the
overall eddy dispersion (Figure 5.5) are immediately recognized in the comparatively large value
of λ3 = 2.61 (with respect to the transchannel and short-range interchannel contributions) as well
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Figure 5.6: Reduced longitudinal plate height (hL) vs reduced velocity (ν) in the range of 0.1 ≤ ν ≤ 500 for confined
cylindrical packings. Each data point represents the average of five generated packings (ε = 0.40). Plate height data for
the bulk packings (dashed line) are shown as well for comparison.

as in the coordinates characterizing the plate height minimum in the hL –ν space in Figure 5.6:
hL,bulk = 1.27 at νmin = 2.5–3.0 for the confined packings versus hL,bulk = 0.5 at νmin = 10–12 for
the bulk packings. This result demonstrates that the impressive performance of the bulk packings is
largely obscured by the geometrical wall effect arising from the cylindrical packing confinement,
here illustrated for a cylinder-to-particle diameter ratio of dc/dp = 20. At ν = 500, for example,
the minimum plate height in the confined cylindrical packings (hL = 5.96) is nearly 6 times larger
than in the bulk packings (hL = 1.03). In HPLC practice the favorable bulk performance is usually
further obscured by extracolumn band broadening, and plate heights generally increase for porous
particles due to diffusion and adsorption/desorption in the stationary phase.

We return to the reduced transition velocities ν1/2 = 2λi/ωi which characterize the individual
contributions to eddy dispersion. From the analysis of the data for the confined cylindrical packings
in Figure 5.6 we obtain ν1/2 = 215, 3.9, and 227 for the transchannel, short-range interchannel, and
transcolumn contributions, respectively. The reduced transition velocity is a rough dividing point
between the dominance of diffusive and flow mechanisms of lateral exchange in a packing at lower
and higher velocities, respectively. The high transition velocities of the transchannel and transcol-
umn contributions indicate that in a practical range of chromatographic operation, at reduced
velocities of about 5 ≤ ν ≤ 20, these effects reduce to simple mass transfer velocity-proportional
terms, while only the short-range interchannel contribution retains its coupling characteristics, i.e.,
with (2λi/ωi � ν), the transchannel and transcolumn contributions can be expressed just as ωiν.
The total effect of the component plate height curves to eddy dispersion can then be written in the
form

hL,eddy = (ω1 + ω3)ν +
2λ1

1 + (2λ1/ω1)ν−1
, (5.10)

where i = 1, 2, and 3 denote the transchannel, short-range interchannel, and transcolumn contri-
butions, respectively. This result agrees well with the scale analysis presented by Giddings for these
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three contributions.131 The relatively low impact of coupling between diffusive and flow mecha-
nisms of eddy dispersion in this limited range of velocities (5 ≤ ν ≤ 20) also explains why the van
Deemter equation (equation (5.3) with n = 0) remains an accurate description of plate height data
in that case, particularly with porous particles, when the mass transfer terms associated with the
stationary phase are added.261,300 Our study demonstrates that the geometrical wall effect,42,235 here
illustrated at an aspect ratio of dc/dp = 20, adds a transcolumn contribution to eddy dispersion
which, over a substantial range of reduced velocities (but certainly within a practical range of
chromatographic operation), can be adequately represented by a conventional mass transfer term
giving rise to a nearly linear dependence of hL on ν. This conclusion, however, is strictly valid only
for the studied packing where only the geometrical wall effect which is an intrinsic property of
confined hard sphere packings exists. In real-life HPLC columns, however, issues are complicated by
the fact that wall effects can vary widely from column to column, not only because the values of λ3

and ω3 for the transcolumn contribution vary with the aspect ratio, but also because these param-
eters are a sensitive function of the packing procedure and particle characteristics like shape and
size distribution or surface roughness. For example, the “size-separation effect” originally analyzed
by Giddings in the context of wall effects131,301 is caused by a very special packing procedure. Thus,
the wall of an HPLC column can interact with the packing in different ways which are simple to
understand individually but whose consequences for eddy dispersion and dependence from dc/dp.
are much more difficult to predict and analyze.

5.5 Conclusions
A carefully conducted numerical analysis of longitudinal and transverse dispersion in computer-
generated bulk and confined cylindrical packings of monosized, nonporous, spherical particles has
allowed us to identify time and length scales as well as the magnitude of individual contributions
to eddy dispersion in each type of packing. For the bulk (unconfined) random-close packings with
interparticle porosities of ε = 0.378 only transchannel and short-range interchannel contributions
(on a length scale of 1–2 dp to eddy dispersion were identified from the transient dispersion behav-
ior. These two contributions, in turn, were used in the analysis of the dependence of the reduced
longitudinal plate height on the reduced velocity for 0.5 ≤ ν ≤ 500 (equation (5.6)). Reasonable
agreement of the “universal” structural parameters (λi and ωi) and the transition velocities ν1/2

for transchannel and short-range interchannel contributions with the values estimated by Giddings
for these effects was observed.

A similar analysis was subsequently conducted for the confined cylindrical packings with an
aspect ratio of dc/dp = 20 and ε = 0.40. This analysis revealed a dominating influence of the
geometrical wall effect in the transient dispersion behavior in the much larger time and length
scales for asymptotic longitudinal and transverse dispersion than observed for the bulk packings.
Whereas asymptotic longitudinal dispersion is achieved on a time scale proportional to the square
of the column radius, transverse dispersion decays to zero on a time scale proportional to the
square of the column diameter, i.e., 4 times more slowly. The influence of the geometrical wall

300 K. M. Usher, C. R. Simmons, and J. G. Dorsey. J. Chromatogr. A, 1200: 122–128, 2008.
301 J. C. Giddings and E. N. Fuller. J. Chromatogr., 7: 255–258, 1962.
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effect on the dispersion behavior is also apparent in the dependence of the reduced plate height
data on the reduced velocity for 0.1 ≤ ν ≤ 500. In particular, the coordinates in the hL –ν space
characterizing the plate height minimum demonstrated a shift from hL,min = 0.5 at νmin = 10–12

for the bulk packings to hL,min = 1.27 at νmin = 2.5–3.0 for the confined cylindrical packings
(Figure 5.6). As a consequence of the geometrical wall effect (manifested in damped porosity
oscillations over a distance of 4–5 dp from the cylinder wall) in the confined cylindrical packings,
a relatively large eddy dispersion parameter λ3 was observed for the transcolumn contribution
in the comprehensive Giddings equation. The latter had been carefully adapted to the actual
packing morphology (equation (5.9)), using insight gained from the bulk packings. Given the
approximate nature of the classification of eddy dispersion contributions and the estimation of the
actual numerical magnitude of the involved parameters, the agreement between the well-defined
sets of transient and asymptotic dispersion data presented in this work and the physicochemical–
hydrodynamic nature of eddy dispersion contributions according to Giddings is favorable. In the
velocity range typically used in operating chromatographic columns the comprehensive Giddings
equation for the studied packing can be reduced to a composite expression in which only the
short-range interchannel contribution retains its coupling characteristics, while transchannel and
transcolumn contributions (due to their relatively high transition velocities) appear as simple mass
transfer velocity-proportional terms (equation (5.10)). This also demonstrates that, in order to
resolve the Giddings equation comprehensively, plate height data have to be acquired carefully,
e.g., without extracolumn effects or contributions from intraparticle diffusion and adsorption. In
addition, a relatively wide range of velocities needs to be covered because the individual eddy
dispersion contributions taper off in different flow regimes. Other effects (particle shape and size
distribution, intraparticle porosity and adsorption) can be incorporated and addressed progressively
in future work to refine the current picture.



Chapter 6

Influence of packing heterogeneity
on hydrodynamic dispersion

Microstructure of the random sphere packings can be classified as more or less heterogeneous, or,
in other words, packings can have different Degree of Heterogeneity (DoH). In this chapter, hydro-
dynamic dispersion is studied in the bulk packings with systematically varied values of porosity
and DoH. DoH was successfully quantified and correlated with the values of the dispersion coeffi-
cient. To our knowledge, this study is the first systematic analysis of the influence of DoH on the
hydrodynamic dispersion, presented in the literature. The results of this chapter were published in
Journal of Chromatography A in 2010.302

6.1 Introduction
The properties of a wide variety of materials, including liquids, glasses, crystals, and granular
media, depend on the way particles pack and arrange.303 One of the scientists who first investigated
the microscopic nature of granular media was Bernal,304–306 who in a series of papers about the
“structure of liquids” reported some of the most important features of the structural organization of
disordered sphere packings. Bernal originally used random packings of ball bearings to study the
structure of liquids and he coined the term ‘random-close packing’ to describe the densest random
arrangement of spheres. Indeed, the filling of containers with balls is among the oldest physical
puzzles known to scientists.307 Apart from its mathematical significance, this problem has found
applications in modern science related, e.g., to jamming in granular media, compaction of colloids,
the structure of liquids, and the glass transition.308 Despite the progress made in developing a
statistical mechanics for such systems,309 the definition of jammed states and the characterization

302 S. Khirevich et al. J. Chromatogr. A, 1217: 4713–4722, 2010.
303 S. Torquato. Random heterogeneous materials: microstructure and macroscopic properties. Springer, 2002.
304 J. D. Bernal. Nature, 183: 141–147, 1959.
305 J. D. Bernal and J. Mason. Nature, 188: 910–911, 1960.
306 J. D. Bernal. Philos. Trans. R. Soc. A, 280: 299–322, 1964.
307 T. Aste and D. L. Weaire. The pursuit of perfect packing. Taylor & Francis, 2000.
308 A. Coniglio et al., eds. Unifying concepts in granular media and glasses. Elsevier, 2004.
309 S. F. Edwards and R. B. S. Oakeshott. Physica A, 157: 1080–1090, 1989.
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of their randomness are still intensively discussed.171,310–314

In chromatography we have accepted to “jam-pack” columns by a slurry packing process that
experience has told us to be most appropriate in terms of the traditionally measured (post-column)
separation efficiency.279,315 The packing process involves several, often strongly interrelated, param-
eters, among them the physicochemical properties of the stationary-phase particles, interparticle
forces, slurry preparation, the application of pressure and ultrasound, as well as the coupled stress–
strain-flow behavior.316 Owing to the difficulty in probing the packing microstructure systematically
as a function of all relevant process parameters, column packing and consolidation are largely
treated phenomenologically and considered an art rather than a science. Although at present the
packing process cannot be approached comprehensively by simulations, recent progress in our un-
derstanding and modeling of the dynamic behavior of particulate systems originates from discrete
particle simulation.317,318

The density or particle volume fraction ρ of random sphere packings falls between ρ∼ 0.55

and ρ ∼ 0.64, values which are commonly referred to as the random-loose-packing (RLP) and
random-close packing (RCP) limit, respectively.15,171,319–321 In chromatography, the density of a
column packing is more often described by the interparticle void fraction or interparticle porosity
ε = 1− ρ. Stable column packings can vary up to 15% in their interparticle porosities, depending
on the packing parameters. Moreover, a given interparticle porosity is just a macroscopic value that
may apply to a large number of columns with very different packing microstructures. The latter,
however, determine the individual structure–transport relationships that govern hydrodynamic
dispersion in and ultimately the separation efficiency of any packed column.

Packing microstructures are commonly classified as “more homogeneous” or “more heteroge-
neous.” These intuitive, qualitative labels are usually based on column performance. Experimentally,
it would be desirable to generate packings with a known and controllable degree of heterogene-
ity. However, this requires a sound scientific quantification of the degree of heterogeneity of the
underlying, individual packing microstructure. An adequate quantification of the disorder (or mi-
crostructural degree of heterogeneity) in different packings, which could have the same packing
density ρ or interparticle porosity ε, and a strong and sensitive correlation to the experimentally
observable dispersion, has not yet been demonstrated.

171 C. Song, P. Wang, and H. A. Makse. Nature, 453: 629–632, 2008.
310 S. Torquato, T. M. Truskett, and P. G. Debenedetti. Phys. Rev. Lett., 84: 2064–2067, 2000.
311 S. Torquato and F. H. Stillinger. J. Phys. Chem. B, 105: 11849–11853, 2001.
312 K. Bagi. Granular Matter, 9: 109–134, 2007.
313 C. Briscoe et al. Phys. Rev. Lett., 101: 188001, 2008.
314 N. C. Karayiannis, K. Foteinopoulou, and M. Laso. Phys. Rev. E, 80: 011307, 2009.
279 G. Guiochon. J. Chromatogr. A, 1126: 6–49, 2006.
315 K. K. Unger, R. Skudas, and M. M. Schulte. J. Chromatogr. A, 1184: 393–415, 2008.
316 B. G. Yew et al. AIChE J., 49: 642–664, 2003.
317 H. P. Zhu et al. Chem. Eng. Sci., 62: 3378–3396, 2007.
318 H. P. Zhu et al. Chem. Eng. Sci., 63: 5728–5770, 2008.
15 T. Aste, M. Saadatfar, and T. J. Senden. Phys. Rev. E, 71: 061302, 2005.

319 R. D. Kamien and A. J. Liu. Phys. Rev. Lett., 99: 155501, 2007.
320 A. V. Anikeenko, N. N. Medvedev, and T. Aste. Phys. Rev. E, 77: 031101, 2008.
321 T. Aste and T. Di Matteo. Eur. Phys. J. B, 64: 511–517, 2008.
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Detailed three-dimensional numerical simulations of flow and transport in sphere packings are
particularly suited to the challenge of investigating the central structure–transport relationships in
chromatographic media, because this approach allows to systematically study relevant parameters,
such as the shape and average size of the particles, the particle size distribution, inter- and intraparti-
cle porosities, as well as the column dimensions and cross-sectional geometry.99,172,185,186,247,284,322–325

Transient dispersion can be recorded easily, thereby quantifying time and length scales required for
the attainment of asymptotic dispersion behavior and providing correlations for the dependence of
dispersion on the mobile phase velocity. Because all dispersion data are referenced to a particular
packing microstructure and are unbiased by extra-column contributions, the numerical simulations
approach establishes a systematic route towards quantitative structure–transport relationships. Fur-
ther, statistical information about the structure of the simulated packings can be collected, because
position, size, and usually also the shape of the particles are known. However, the microstructures
of computer-generated idealized random packings are protocol-dependent, just as packing density
and column performance depend on the precise packing protocol in chromatographic practice.172,310

Thus, any structure–transport analysis should be accompanied by a suitable statistical analysis of
the employed packed beds. This will allow to compare and optimize the protocols for simulated as
well as experimental packings, e.g., with respect to dispersion.

In the present study we apply a statistical and hydrodynamic analysis to packed beds to
correlate disorder with dispersion. We employ Voronoi tessellation and use the distribution of
Voronoi volumes to quantify the degree of heterogeneity of a packing. This method permits to
explicitly capture the disorder of packed beds in the form of quantitative scalar measures. We
demonstrate the great potential of this approach for a well-designed set of computer-generated bulk,
random packings of monosized hard spheres with “more homogeneous” and “more heterogeneous”
microstructures, covering packing densities from the RLP to the RCP limit, and their asymptotic
longitudinal dispersion coefficients simulated over a wide range of mobile phase velocities. To our
knowledge, this is the first report that sensitively correlates the actual disorder of packed beds
with the measurable dispersion in packed beds, using Voronoi volume distributions as a suitable
statistical measure.

6.2 Numerical section
Experience tells us that both packing density or porosity and packing procedure affect dispersion.
We therefore generated a set of bulk packings (which mimic infinitely wide, randomly packed
beds without walls) with packing (interparticle) porosities ε from the RCP to the RLP limit and a
systematically varied degree of heterogeneity.

99 D. Coelho, J.-F. Thovert, and P. M. Adler. Phys. Rev. E, 55: 1959–1978, 1997.
172 R. S. Maier et al. Water Resour. Res., 44: W06S03, 2008.
185 R. S. Maier et al. Philos. Trans. R. Soc. A, 360: 497–506, 2002.
186 P. Magnico. Chem. Eng. Sci., 58: 5005–5024, 2003.
247 D. Hlushkou, A. Seidel-Morgenstern, and U. Tallarek. Langmuir, 21: 6097–6112, 2005.
284 S. Stapf et al. Phys. Rev. E, 58: 6206–6221, 1998.
322 K. E. Thompson and H. S. Fogler. AIChE J., 43: 1377–1389, 1997.
323 M. D. Mantle, A. J. Sederman, and L. F. Gladden. Chem. Eng. Sci., 56: 523–529, 2001.
324 R. J. Hill, D. L. Koch, and A. J. C. Ladd. J. Fluid Mech., 448: 213–241, 2001.
325 M. R. Schure and R. S. Maier. J. Chromatogr. A, 1126: 58–69, 2006.
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3 dp

3 dp

Rx0.001

Sx2

Figure 6.1: Bulk (unconfined) random packings of monosized hard spheres at the random-loose packing limit (ε = 0.46),
generated with the Rx0.001 or Sx2 packing protocols. Shown are the generated packings (left) and three particle layers
of the packings (right), as a front view and as the projection of particle centers onto the front plane.

Computationally, isotropic random monosized hard-sphere packings with periodic boundary
conditions and dimensions of approximately 10 dp×10 dp×70 dp (where dp is the sphere diameter)
were successfully reproduced using a modified Jodrey–Tory (JT) algorithm, which is described
in the Section 1.1. The realized packing dimensions are sufficient for performing both statistical
analysis of packing microstructure and simulations of hydrodynamic dispersion within the void
space of a packing.

In this study we represent varying degrees of microstructural disorder by four different types
of packings (see Subsection 1.1.1). So-called R-packings originate from a random uniform initial
distribution of particle centers in the simulation box. To generate S-packings, the simulation box
was initially divided into n equal cubic cells and each particle center was then placed in a ran-
dom position into a cell. Here n denotes amount of spheres in the packing. Both types of initial
distributions result in a uniform random distribution of particle centers within the simulation box.
R-packings were generated with α = 1 (R) or α = 0.001 (Rx0.001), and S-packings with α = 1

(S) or α = 2 (Sx2). The meaning of the displacement parameter α is given in the Subsection 1.1.1,
equation (1.3). With a small displacement value the particle centers tend to stay closer to their
initial positions so that the final configuration reflects the randomness of the initial distribution
of particle centers. A larger displacement value provides a more uniform distribution of particle
centers in the final configuration. The four generated packing types therefore reflect a systematic
decrease of heterogeneity (or disorder) in the sequence: Rx0.001 > R > S > Sx2.

Figure 6.1 shows a front view onto three particle layers as well as a projection of the particle
centers for the most ordered and the least ordered of the generated packings (Sx2 and Rx0.001,
respectively). Even to the experienced eye, differences between the two packing microstructures
are not discernible in Figure 6.1. Therefore, we use two-dimensional views (disks instead of
spheres) to illustrate the differences between the four different packing types and additionally
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Figure 6.2: Bulk (unconfined) random packings of monosized hard disks at ε = 0.46 generated with different packing
protocols. Shown are the initial distributions of the disks for S- and R-configurations (top) and the generated two-
dimensional packings (Sx6, S, R, Rx0.001; bottom). Circles around several regions help to compare the microstructure
in the initial distributions with that of the final packings.

replace the Sx2 packing by a Sx6 packing for a stronger effect (Figure 6.2). For selected regions
the microstructure of the final packings is compared with the respective initial particle center
distributions in Figure 6.2. The generated packings indeed reflect what was intended by their
respective packing protocols: i) S-packings are more homogeneous than R-packings, owing to the
initial, ordered distribution of the disks, and ii) initial nonuniformities are best balanced in the Sx6
configuration and least balanced in the Rx0.001 configuration.

Three-dimensional sphere packings of each type were generated at the following porosities:
ε = 0.366, 0.38, 0.40, 0.42, 0.44, and 0.46. The border values (ε = 0.366 and 0.46) reflect the
theoretical RCP and RLP limits reported by Song et al.171 They have shown that random hard-
sphere packings in three dimensions cannot exceed a density limit of ρ = 0.634 (or ε = 0.366).
Similarly, they predicted a theoretical limit for the lowest stable volume fraction occupied by a
sphere packing of ρ = 0.536 (ε = 0.464).

For each packing protocol and porosity 10 individual packings were generated from 10 different
initial positions of particle centers (seeds). We were not able to generate Sx2 packings at the RCP
limit (ε = 0.366). The total of all generated packings amounts to 230. Each packing was discretized
with a relatively high spatial resolution of 60 nodes per dp resulting in a space grid with dimensions
of approximately 600× 600× 4300 nodes.

The lattice-Boltzmann method (LBM) was used for the simulation of low-Reynolds number
flow of an incompressible fluid in the interparticle void space of the bulk packings (Subsection 1.3.2).
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For each packing, the velocity field was first calculated at a low Reynolds number (∼0.1), and the
calculated velocity field was then linearly rescaled132 to cover the whole velocity range used in the
dispersion simulations.

All simulations were performed on IBM Blue Gene/P systems installed at RZG (Rechenzentrum
Garching, Germany) and FZJ (Forschungszentrum Jülich, Germany). A typical simulation of one
velocity field required ∼ 0.5 h on 2048 processor cores and around 420 GB of memory. After its
simulation, the calculated velocity field was written into an output file with a size of ∼17 GB.

Mass transport in the bulk packings was simulated by a random walk particle tracking (RWPT)
technique (Subsection 1.4.2) and time-dependent longitudinal dispersion coefficients DL(t) and
DT(t) were calculated from the tracer displacements as described in Subsection 1.4.3.

Hydrodynamic dispersion in the packings was simulated at reduced velocities (ν) or particle
Péclet numbers (Pe), defined as ν ≡ Pe = uavdp/Dm (where uav is the average mobile phase veloc-
ity through the packed bed), ranging from 0.5 to 750. The total simulation time of hydrodynamic
dispersion for all generated packings was ∼460 h on 2048 Blue Gene/P processor cores.

6.3 Results and discussion
6.3.1 Statistical analysis of packed beds
A sensitive analysis tool for probing the local packing density and disorder in packed beds is the
determination of Voronoi cells.41,44,45,326 This method, initiated by Finney,327 has found increasing
use for the characterization of the morphology of random sphere packings, including the study
of, e.g., structural transitions upon compaction or the formation of coagulated colloids.319,328–336

In particular, Schenker et al.336 recently investigated and compared different methods to quantify
and classify the disorder of particulate packings (in the context of stability and microstructure
of coagulated colloids) based on i) pore size distribution, ii) density-fluctuation, and iii) Voronoi
volume distribution. Each of these methods provides a scalar measure, either via a parameter in
a fit function or an integral, that correlates with the heterogeneity of the microstructure and thus
allows to quantitatively capture the degree of heterogeneity of a granular material. They found that

132 M. R. Schure et al. Anal. Chem., 74: 6006–6016, 2002.
41 A. Okabe. Spatial tessellations: concepts and applications of Voronoi diagrams. 2nd ed. John Wiley & Sons, 2000.
44 G. Voronoi. J. Reine Angew. Math., 133: 97–102, 1908.
45 G. Voronoi. J. Reine Angew. Math., 134: 198–287, 1908.

326 G. Voronoi. J. Reine Angew. Math., 136: 67–182, 1909.
327 J. L. Finney. Philos. Trans. R. Soc. A, 319: 479–493, 1970.
328 R. Jullien et al. Phys. Rev. E, 54: 6035–6041, 1996.
329 L. Oger et al. Philos. Mag., 74: 177–197, 1996.
330 P. L. Spedding and R. M. Spencer. Comput. Chem. Eng., 22: 247–257, 1998.
331 P. Richard et al. Granular Matter, 1: 203–211, 1999.
332 R. Y. Yang, R. P. Zou, and A. B. Yu. Phys. Rev. E, 65: 041302, 2002.
333 J. Q. Xu, R. P. Zou, and A. B. Yu. Granular Matter, 9: 455–463, 2007.
334 A. V. Anikeenko and N. N. Medvedev. Phys. Rev. Lett., 98: 235504, 2007.
335 T. Aste and T. Di Matteo. Phys. Rev. E, 77: 021309, 2008.
336 I. Schenker et al. Phys. Rev. E, 80: 021302, 2009.
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Figure 6.3: a) Voronoi cells in a two-dimensional array of disks. The Voronoi cell of disk i is encased by the bold red
lines. The gray-shaded area indicates the contribution of disk j to the Voronoi area of disk i. b) Three-dimensional
Voronoi tessellation of a sphere packing (bottom); Voronoi cell of a sphere (highlighted in green) and some of the
sphere neighbors contributing to the volume of the cell (top). c) Voronoi volume distributions for the generated bulk
sphere packings at the limiting porosities (ε = 0.366 and 0.46).

among the three methods, analysis of the Voronoi volume distributions reflected differences in the
degree of microstructural heterogeneity most sensitively.336 We therefore expect this method to be
an excellent diagnostic tool for establishing a strong correlation between disorder and dispersion
in packed beds.

A Voronoi cell is the generalization of a Wigner–Seitz cell for disordered structures. For a
packing of monosized spheres it is the polyhedron that contains all points closer to a given sphere
center than to any other41,44,45,326 (as illustrated in Figure 6.3a for a set of monosized disks; cf. the
area encased by the bold red lines around disk center i). Voronoi tessellation partitions the whole
space of a sphere packing into a set of non-overlapping Voronoi volumes V, which are inherently
associated with the local packing density. The packing is represented quantitatively by the Voronoi
volume distribution P (V ). The distribution function is defined such that P (V )dV is the fraction of
cells with a volume between V and V + dV . We used the QUICKHULL algorithm337 to compute the
volume V of the Voronoi cells.

Figure 6.3c shows the Voronoi volume distributions for the generated packings at the limiting
porosities, ε = 0.366 and 0.46. At the RCP limit (ε = 0.366), all Voronoi volume distributions are
relatively narrow and symmetric, irrespective of the underlying packing protocol. They are nearly
perfectly collapsed onto a single “universal” distribution. At the RLP limit (ε = 0.46) the distribu-
tions are shifted towards larger Voronoi volumes, as expected from the “dilution” of the packings
at increasing porosity, and differences between the packing protocols emerge. Importantly, Voronoi
volume distributions become wider and more asymmetric (skewed) with increasing microstruc-
tural heterogeneity in a packing. Thus, the Sx2 packing has the narrowest and most symmetric
Voronoi volume distribution at ε = 0.46, and the Rx0.001 packing the broadest and most skewed,
confirming the qualitative structural insight from Figure 6.2.

337 C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. ACM Trans. Math. Software, 22: 469–483, 1996.
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Figure 6.4: Statistical analysis of the Voronoi volume distributions P (V ) for the bulk sphere packings (cf. Figure 6.3c).
a) Standard deviation σ and b) skewness γ as a function of packing protocol (Rx0.001, R, S, Sx2) and porosity (0.366 ≤
ε ≤ 0.46). Error bars indicate upper and lower bounds of 95% confidence intervals.

Figure 6.4 summarizes the statistical properties of the Voronoi volume distributions for the gen-
erated packings in terms of the standard deviation σ (Figure 6.4a) and the skewness γ (Figure 6.4b).
These data quantify the effect of packing protocol and porosity as we move from the RCP (ε =

0.366) to the RLP limit (ε = 0.46) on the microstructural heterogeneity of a packing, already quali-
tatively discussed for Figure 6.3c. At the RCP limit (ε = 0.366), the standard deviations σ(P (V ))

are practically identical for all generated packings (Figure 6.4a). With increasing porosity σ(P (V ))

increases monotonically, and differences in σ(P (V )) between the packing types are visible from
ε = 0.40. The skewness of the distribution γ(P (V )) is little affected by increasing porosity for the
S-packings (Figure 6.4b). Differentiation between R- and S-packings by γ(P (V )) starts already
at ε = 0.38, and γ(P (V )) for the R-packings is rather sensitive towards increasing porosity. The
strongest effect on the statistical parameters σ(P (V )) and γ(P (V )) in Figure 6.4 comes from the
principal difference between R- and S-packings, i.e., the random or ordered initial distribution of
particle centers. Variation of the rate constant in the packing protocols (i.e., varying the distance
over which particle centers can move away from their initial positions) affects the statistical pa-
rameters moderately and in the expected direction. Figure 6.4 augments the qualitative picture of
Figure 6.2 by a thorough statistical analysis, demonstrating that the S-packings retain relatively
narrow and symmetric Voronoi volume distributions even at increasing porosity (as opposed to the
R-packings), and that the four generated packing types are indeed characterized by a systematic
decrease of disorder in the sequence: Rx0.001 > R > S > Sx2.

The Voronoi volume distributions in Figure 6.4 describe the degree of deviation of a given
packing type from a perfectly crystalline packing. All spheres in a crystal are associated with the
same Voronoi volume, so that the Voronoi volume distribution is a delta function. For the studied
random bulk packings the Voronoi volume distributions become wider and more asymmetric as
we move from the RCP (ε = 0.366) to the RLP limit (ε = 0.46). Their standard deviation and
skewness can then be used to express and quantify the heterogeneity of a packing (Figure 6.4),
analogous to the familiar analysis of separation efficiency from the width and skewness of peaks
in a chromatogram.
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For completeness we mention that Aste and Di Matteo335 deduced by statistical mechanics that
the Voronoi volume distributions for monodisperse random sphere packings follow a so-called two-
parameter ‘k-Gamma’ function, in which k, the shape parameter of the curve, depends sensitively
on the packing microstructure. Furthermore, we also conducted a Delaunay tessellation41,320 of the
generated packings, but found a stronger correlation between dispersion and disorder with the
statistical moments of the Voronoi volume distributions.

Our findings (Figure 6.4) agree with those of closely related investigations,328,332,335 where the
dilution of particle packings was always accompanied by broadening and increasing asymmetry
of the Voronoi volume distributions. Packings at the RCP limit show merely statistical variations
in standard deviation and skewness of their Voronoi volume distributions (Figures 6.3 and 6.4),
because the constraints of the RCP limit on the placement of particles allow for so little variation
in packing microstructure that the different protocols used in this study will nonetheless yield very
similar packings.171,310,319–321 At the other extreme of stable packings, the RLP limit, the spheres
experience more freedom of placement and differences between the packing types are clearly re-
flected in their Voronoi volume distributions. This behavior can be visualized with a formal analogy
between the statistical mechanics of granular jammed matter and classical statistical mechanics:
the microcanonical ensemble, defined by all microstates with fixed energy, is replaced by the en-
semble of all jammed microstates with fixed volume.309 Within this notion, the RCP limit of spheres
can be interpreted as the ground state of the ensemble of jammed matter for a given friction (see,
e.g., the volume landscape of jammed matter, Figure 2 in Reference [171]).

6.3.2 Transient and asymptotic dispersion
We simulated eddy dispersion in the generated packings to correlate the quantified microstructural
disorder with the transport properties most relevant to chromatography. The longitudinal dispersion
coefficient DL usually discussed in the engineering literature166 is related to chromatographic plate
height H by131

DL =
uavH

2
=
νDmh

2
, (6.1)

where h = H/dp denotes reduced plate height and ν is the reduced velocity introduced earlier.
The flow pattern of a fluid depends critically on the morphology of the pore space available
for the flow, so that the inherent structural heterogeneities of the packed beds investigated in
this work determine time and length scales that characterize velocity fluctuations in the mobile
phase.89,131,145,276,277,338

166 J. M. P. Q. Delgado. Heat Mass Transfer, 42: 279–310, 2006.
131 J. C. Giddings. Dynamics of chromatography: principles and theory. Marcel Dekker, 1965.
89 J. Bear. Dynamics of fluids in porous media. Dover Publications, 1988.

145 D. L. Koch and J. F. Brady. J. Fluid Mech., 154: 399–427, 1985.
276 S. G. Weber and P. W. Carr. In: High Performance Liquid Chromatography. P. R. Brown and R. A. Hartwick, eds.

Chap. 1. John Wiley & Sons, 1989.
277 F. Gritti and G. Guiochon. Anal. Chem., 78: 5329–5347, 2006.
338 A. L. Berdichevsky and U. D. Neue. J. Chromatogr., 535: 189–198, 1990.
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By applying the random walk relationship to a model of eddy dispersion incorporating the
coupling between transverse diffusion and spatial velocity fluctuations, Giddings131 developed a
plate height equation by analogy to parallel conductors. The comprehensive equation for h = f(ν)

is

hL =
HL

dp

=
b

ν
+

4∑
i=1

2λi
1 + (2λi/ωi)ν−1

+ cν. (6.2)

The first term on the right-hand side of equation (6.2), b/ν, accounts for the effect of lon-
gitudinal molecular diffusion in the packed bed driven by the concentration gradient along the
zone profile.277 The second term in equation (6.2) describes eddy dispersion as the sum of four
contributions used to model the erratic mass transfer by flow and diffusion in the interparticle pore
space of a packing on different length scales (transchannel, short-range interchannel, long-range
interchannel, and transcolumn), where λi and ωi are universal structural parameters characteristic
of each contribution, and the ratio ν1/2 = 2λi/ωi is a reduced transition velocity for each type of
velocity disparity. It is the velocity at which the corresponding plate height term reaches half of
its limiting value and thereafter begins to flatten noticeably.286 The last term in equation (6.2), cν,
accounts for the mass transfer kinetics from the bulk solution into and across the particles.287

To our knowledge the challenge of resolving systematically, either by experiment or simulation,
the different structural parameters characteristic of each contribution to the eddy dispersion term
of the comprehensive Giddings equation (equation (6.2)) has never been undertaken. Past investi-
gations in this direction132,261,275,290 are all in favor of Giddings’ coupling theory of eddy dispersion,
but the analysis remained limited to the “simple” Giddings equation, i.e., equation (6.2) with i = 1.

Recent progress in our understanding of the time and length scales as well as the magnitude of
individual contributions to eddy dispersion in chromatographic beds stems from a high-resolution
numerical analysis of flow and mass transport in computer-generated bulk packings of spherical
particles and complementary confined cylindrical packings with a cylinder-to-particle diameter
ratio of 20 (Chapter 5).

In Chapter 5 as well as in the present chapter, the choice of packing protocols, porosities, and
operating conditions in our numerical analysis approach facilitates the focus on eddy dispersion
and its precise dependence on the morphology of the packed beds. The selection of perfectly
monosized, spherical particles allows the strict operation with reduced parameters (h = H/dp and
ν = uavdp/Dm) without influence from the particle size distribution and particle shape. The use
of nonporous support particles and inert conditions (unretained tracer particles) eliminates mass
transfer resistance contributions (c = 0 in equation (6.2)).275,290 Although it has sometimes been
claimed that even with solid particles and unretained tracers a remaining c-term in equation (6.2)
is needed to account for pore-scale Taylor dispersion, we like to emphasize that this contribution is

286 J. C. Giddings. Nature, 184: 357–358, 1959.
287 K. Miyabe and G. Guiochon. J. Sep. Sci., 26: 155–173, 2003.
261 U. Tallarek, E. Bayer, and G. Guiochon. J. Am. Chem. Soc., 120: 1494–1505, 1998.
275 J. H. Knox. J. Chromatogr. A, 960: 7–18, 2002.
290 P. Magnico and M. Martin. J. Chromatogr., 517: 31–49, 1990.
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already contained in the eddy dispersion term of equation (6.2) as the transchannel contribution.
In deriving equation (6.2) under most general conditions, Giddings has pooled all mass transfer
resistances in the mobile phase (as distinguished from diffusion and adsorption/desorption in the
stationary phase) into the coupling expression of equation (6.2) (cf. derivation of equation (2.11-1)
on page 62 in Reference [131] and the transition to equation (2.11-2)).

For the packings and conditions considered in our analysis, the coefficient accounting for the
contribution of longitudinal diffusion to the reduced plate height in equation (6.2) b = 2γ, where γ
is the obstruction factor often used in chromatography.131,274 It is the inverse of the tortuosity factor
(τ ) of the interconnected pore space usually used in the engineering literature166 and is defined as

γ = lim
t→∞

D(t)

Dm

=
1

τ
=
Deff

Dm

, (6.3)

where Deff is the effective diffusion coefficient in the sphere packing, i.e., its asymptotic value
observed in the long-time limit for ν = 0.

The packed beds in this work mimic infinitely wide, unconfined random sphere packings,
suitable for the study of eddy dispersion as related to bulk microstructural properties without the
complex influence of wall effects.18,32,42,180,185,235,238,325 To quantify the time and length scales behind
the velocity heterogeneities from different packing microstructures, we analyze the development
of longitudinal dispersion coefficients DL(t). Monitoring the transient behavior of the dispersion
process towards asymptotic values allows to distinguish between individual contributions to eddy
dispersion, especially with regard to the upper limit of the involved time and length scales. This
helps to condense, where physically meaningful, the number of scales of velocity disparity in a
packing proposed by Giddings.131 In the investigated bulk packings, we expect only the transchannel
and a short-range interchannel effect to contribute to eddy dispersion.

Figure 6.5a shows the development of normalized longitudinal dispersion coefficients DL/Dm

at ν = 50 for the Rx0.001 packings at three porosities (ε = 0.366, 0.42, and 0.46). Elapsed time here
has been normalized through the transverse dispersive time τD = 2DTt/d

2
p. The dispersive time unit

2DTt/d
2
p corresponds to the time span after which tracer particles are dispersed laterally by one

sphere diameter. The use of the transverse dispersive time scale is important here, because neither
pure diffusion nor pure convection determines the lateral equilibration between different velocities,
which instead would have resulted in a diffusive (τD = 2Dmt/d

2
p) or a convective (τC = uavt/dp)

time scale. The use of DT(ν) in the dimensionless dispersive time scale τD (Figure 6.5a) reflects the
actual combination of flow and diffusion, which is also the essence of Giddings’ coupling theory.131

All generated packings, irrespective of their packing protocol, demonstrate asymptotic disper-
sion for τD < 2 throughout the whole porosity range (ε = 0.366–0.46), as shown exemplarily

274 J. H. Knox. J. Chromatogr. A, 831: 3–15, 1999.
18 H. Freund et al. Ind. Eng. Chem. Res., 44: 6423–6434, 2005.
32 G. E. Mueller. Powder Technol., 159: 105–110, 2005.
42 R. S. Maier et al. Phys. Fluids, 15: 3795–3815, 2003.

180 R. S. Maier, D. M. Kroll, and H. T. Davis. AIChE J., 53: 527–530, 2007.
235 A. de Klerk. AIChE J., 49: 2022–2029, 2003.
238 R. A. Shalliker, B. S. Broyles, and G. Guiochon. J. Chromatogr. A, 888: 1–12, 2000.
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Figure 6.5: a) Time evolution of normalized longitudinal dispersion coefficients DL(t)/Dm at ν = uavdp/Dm = 50 for
Rx0.001 packings at porosities of ε = 0.366, 0.42, and 0.46. b) Normalized asymptotic dispersion coefficients DL/Dm

for all generated packings as a function of packing protocol and porosity. Error bars indicate upper and lower bounds of
95% confidence intervals.

for the Rx0.001 packings in Figure 6.5a. However, as the porosity decreases from ε = 0.46 to
ε = 0.366, the transient dispersion domain shrinks, i.e., asymptotic dispersion is reached faster
(cf. Figure 6.5a). This is readily explained by our previous analysis (Figure 6.4) to originate from
the accompanying decrease of local disorder in the packing microstructures. The time scale of
τD = 2DTt/d

2
p ≈ 2 translates to a characteristic average transverse dispersion length in the bulk

packings 〈lT〉 of

〈lT〉 =
√

2DT(ν)t ≈
√

2 dp. (6.4)

Thus, dispersion in the bulk packings is asymptotic after a distance of about 1.4 dp (or less,
depending on the packing protocol and porosity) has been sampled laterally by the tracer particles.

The analysis of longitudinal dispersion confirms our surmise that a short-range disorder is
responsible for the upper limit in the time and length scales of eddy dispersion in the bulk packings.
Whereas transchannel equilibration (length scale � dp) is required in any packed bed, ordered
or random, the short-range heterogeneity observed here is associated with the disorder in a ran-
dom sphere packing as compared with a crystalline packing. Our characterization of a short-scale
heterogeneity on the order of 1–1.5 dp (Figure 6.5a, equation (6.4)) compares favorably with the
distance of ∼ 1.25dp required for exchanging molecules between the involved velocity extremes
estimated by Giddings (page 45 in Reference [131]).

Figure 6.5b contains the asymptotic longitudinal dispersion coefficients (DL/Dm) for all gen-
erated packings at ν = 50. The data are immediately reminiscent of those in Figure 6.4, i.e., the
dispersion coefficients and (particularly) the standard deviations of the Voronoi volume distribu-
tions (Figure 6.4a) show highly similar dependencies on packing protocol and porosity. From this
we conclude that the width of the Voronoi volume distribution of a packing is a sensitive measure
for its disorder that closely correlates with the dispersion in the packing.
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To summarize, our analysis of transient dispersion in the bulk sphere packings reveals a short-
range interchannel contribution on the single-particle scale (1–1.5 dp) in addition to the transchan-
nel contribution, which naturally exists in any packed bed on the scale of an individual channel
between the particles (� dp). Thus, all packings investigated in this work can be characterized
as relatively homogeneous, even though they were generated to reflect individual local disorder
(Figures 6.2–6.4). Structural and flow heterogeneities beyond the documented short-scale (cf.
Figure 6.5a, equation (6.4)) cannot be resolved.

This knowledge is extremely helpful in analyzing the dependence of reduced plate heights
on the reduced velocity, h = f(ν), by the comprehensive Giddings equation (6.2), as it allows
to reduce the number of eddy dispersion contributions to the transchannel and the short-range
interchannel effect (equation (6.2) with i = 2). Thus, we use the following form of equation (6.2)
to fit the dependence of reduced plate heights (calculated from the asymptotic values of DL/Dm —
see Figure 6.5a — via equation (6.1)) on the reduced velocity for the generated bulk packings (cf.
equation (2.11-6) on page 63 in Reference [131])

hL =
2γ

ν
+

2λ1

1 + (2λ1/ω1)ν−1︸ ︷︷ ︸
transchannel

+
2λ2

1 + (2λ2/ω2)ν−1︸ ︷︷ ︸
short-range interchannel

, (6.5)

where indices 1 and 2 refer to the transchannel and the short-range interchannel contribution
to eddy dispersion, respectively. As explained above, the use of nonporous support particles and
unretained tracer particles gives c = 0 in equation (6.2).

The h–ν curves for the four different types of bulk packings are presented in Figure 6.6. Each
curve contains 29 values for h over the range of 0.5 ≤ ν ≤ 750, with each h value representing
the average from 10 individual packings of a given type and porosity. For packings at the limiting
porosities (ε = 0.366 and ε = 0.46) the best fits of the h–ν data to the condensed Giddings
equation for bulk packings (equation (6.5)) are also shown. Equation (6.5) fits excellently the
simulated plate height data over the whole range of reduced velocities (R2 > 0.999). The shift of
the plate height curves as the porosity increases from ε = 0.366 and ε = 0.46 reveals the degree to
which the porosity increases the disorder and therefore the dispersion in a particular packing type.
The plate height curves for the most ordered packing type, the Sx2 packings, are hardly affected
by a porosity increase, whereas those for the least ordered packing type, the Rx0.001 packings,
span a relatively large range. For example, the curve minimum for the Rx0.001 packings shifts
from the universal (to all packing types) minimum at the RCP limit at hmin = 0.5 and νmin = 10

to hmin = 1 and νmin = 5 at the RLP limit. The disparate sensitivities of the various packing types
towards increased porosity underline the importance of the packing method for dispersion in (and
ultimately the separation efficiency of) a packed bed.

The parameters for the transchannel (λ1, ω1) and the short-range interchannel contribution
(λ2, ω2) obtained from the fitting of the comprehensive dataset of Figure 6.6 are summarized
in Figure 6.7. Values for the obstruction factor γ = Deff/Dm (equation (6.3)) were obtained
independently by monitoring the long-time (tortuosity) limit of the diffusion coefficient Deff in
the generated bulk packings, analogous to DL(t)/Dm in Figure 6.5a, but for ν = 0. In this way,
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Figure 6.6: Dependence of the reduced plate height h = H/dp on the reduced velocity ν = uavdp/Dm (0.5 ≤ ν ≤ 750)
and the porosity (0.366 ≤ ε ≤ 0.46) for the four different types of bulk packings (Rx0.001, R, S, Sx2). Each value of
h represents the average from 10 generated packings. Solid lines are the best fits of the data at ε = 0.366 and 0.46 to
equation ε = 0.366 and 0.46 to equation (6.5).

the contribution of longitudinal diffusion to the dispersion (first term on the righthand side of
equation (6.5)) can be determined separately and with high precision (Chapter 5). The values
of γ range from ∼ 0.65 (for all packings at the RCP limit) to ∼ 0.71 (for the Sx2 packings at
the RLP limit). The received value for each packing was then fixed during fitting of the h–ν
data in Figure 6.6 to equation (6.5). The values of Figure 6.7 should now be compared with the
estimates of Giddings,131 who did not include their dependence on packing method or porosity, but
was certainly well aware at his time that both factors influence the final packing microstructure.
Giddings estimated values of λ1 ∼ 0.5, ω1 ∼ 0.01, λ2 ∼ 0.5, and ω2 ∼ 0.5.131 We recognize that our
values in Figure 6.7 genuinely reflect his estimates made more than forty years ago. Concerning the
remaining differences in the “universal” structural parameters (λi and ωi) it should be noted that
the exact geometrical and topological differences between the packed beds analyzed by Giddings
and those studied in this work (and particularly those encountered in chromatographic practice)
are hardly known with sufficient accuracy to allow for meaningful quantitative distinctions. But
exactly this missing link is provided in the current work by the complementary statistical analysis
of the packed beds (Figures 6.3 and 6.4), which quantifies their disorder.

Comparison of Figure 6.7 with Figure 6.4 now rounds off our structure–transport analysis
from packing generation via statistical mechanics to hydrodynamics and chromatography. We par-
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from the best fits of the comprehensive dataset of Figure 6.6 to the condensed Giddings equation for bulk packings,
equation (6.5).

ticularly note the strong correlation between the dependencies on generation protocol and porosity
of the short-range interchannel effect (λ2, ω2) in Figure 6.7 and both the standard deviation (σ)
and skewness (γ) of the Voronoi volume distributions reported in Figure 6.4. Thus, both statistical
measures of the Voronoi volume distributions (σ, γ) are excellent, quantitative descriptors of the
short-range disorder in the generated packings. This confirms that the deviation of the Voronoi
volume distributions in Figure 6.3 from the delta function characterizing a crystalline packing
describes the origin of short-range disorder, and the statistical measures in Figure 6.4 therefore
represent particle packings with an individual, local randomness in their microstructure.

In addition to the strong correlation between our statistical measures (Figure 6.4) and the pa-
rameters λ2 and ω2 characterizing the short-range interchannel effect (right column in Figure 6.7),
we also note a weaker correlation of the statistical measures with the parameter ω1 for the tran-
schannel effect in Figure 6.7. This is expected, because the value of ω1 depends on the lateral
dimensions of the interparticle pores in a packed bed (pp. 43–44 in Reference [131]), thus, also
on the porosity and individual generation of a packing. Further, we observe little or no correlation
between the statistical measures in Figure 6.4 and the parameter λ1 for the transchannel effect
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(Figure 6.7). The values of λ1 scatter around ∼ 0.48 (close to Giddings’ value of 0.5131). In this
respect, the velocity inequality between the center and the wall regions of a pore may be envisioned
as lasting along the length of a single particle, after which the flow will split up into several sub-
sequent pores (pp. 49–50 in Referencee [131]). Therefore, the value of λ1 is little or not affected
by the local disorder encountered in this work. To summarize, the analysis of short-range disorder
based on the Voronoi volume distributions (Figure 6.4) shows the expected strong correlation
with the short-range interchannel contribution to eddy dispersion in equation (6.5), whereas the
transchannel contribution is relatively little affected.

Finally, by examining the above-determined structural parameters (λi, ωi) we identify the
short-range interchannel effect as being responsible for a convex upward bending of the eddy
dispersion curve at low velocities. The transchannel effect causes the eddy dispersion curve (and
overall plate height data) to taper off at high velocities. This is easily understood by calculating the
transition velocities ν1/2 = 2λi/ωi for each contribution to eddy dispersion at which the plate height
term reaches half of its limiting value and thereafter begins to flatten noticeably.286 Where ν1/2 is
large (∼200 for the transchannel effect) the contribution to the reduced plate height continues to
increase with velocity over a significant range of the plots in Figure 6.6, the same as for an ordinary
kinetics or mass transfer velocity-proportional term, whereas the plate height contribution of the
short-range interchannel effect (ν∼3) reaches its plateau at relatively low velocities.

The high transition velocities of the transchannel contribution indicate that in a practical range
of chromatographic operation, i.e., at reduced velocities of about 5 ≤ ν ≤ 20, this effect reduces
to a simple mass transfer velocity-proportional term, i.e., for (2λi/ωi � ν), the transchannel
contribution can be expressed by ω1ν. Only the short-range interchannel contribution retains its
coupling characteristics. The total effect of the component plate height curves to eddy dispersion
can then be written in the form

heddy = ω1ν +
2λ2

1 + (2λ2/ω2)ν−1
. (6.6)

This result agrees very well with the scale analysis for bulk packings in previous Chapter 5. The
relatively low impact of coupling between diffusive and flow mechanisms of eddy dispersion in this
limited range of velocities (5 ≤ ν ≤ 20) also explains why the van Deemter equation289 remains
an accurate description of plate height data in that case, particularly with porous particles, when
the mass transfer terms associated with the stationary phase are added.261,300

6.4 Conclusions
Statistical analysis of packed beds by the standard deviation and skewness of the Voronoi volume
distributions (Figures 6.3c and 6.4) provides quantitative scalar measures for local disorder in
packing microstructure that correlate strongly with the resulting eddy dispersion (Figures 6.5b and
6.6). Therefore, the presented approach defines a straight route to quantitative structure–transport

289 J. J. van Deemter, F. J. Zuiderweg, and A. Klinkenberg. Chem. Eng. Sci., 5: 271–289, 1956.
300 K. M. Usher, C. R. Simmons, and J. G. Dorsey. J. Chromatogr. A, 1200: 122–128, 2008.
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relationships, replacing popularized views based on heuristics.161 Transport phenomena relevant
to chromatography can be analyzed in detail by direct numerical simulations (realized on an
efficient high-performance computing platform) and correlated, e.g., with the generalized Giddings
equation (Figures 6.6 and 6.7). Complementary analysis of the transient dispersion domain allows
to identify the spatial scales of disorder in the packings, which helps to condense the number of
scales of velocity disparity in a packing proposed by Giddings.131 In the investigated bulk packings,
we identified only the transchannel and a short-range interchannel effect to contribute to eddy
dispersion (Figure 6.5a). This result is in excellent agreement with our statistical analysis based
on the Voronoi volume distributions, which revealed a packing porosity and protocol-dependent
short-range disorder, in a strong correlation with the short-range interchannel contribution to eddy
dispersion (Figures 6.4 and 6.6).

161 J. Billen et al. J. Chromatogr. A, 1073: 53–61, 2005.





Chapter 7

Influence of packing heterogeneity
on effective diffusion

This chapter is concerned with diffusion in monodisperse random sphere packings. Using two algo-
rithms, Monte Carlo and Jodrey–Troy, we generated monodisperse packings with six distinct types
of the microstructural disorder and six porosity values between 0.366 and 0.46. Microstructure of
the generated packings was analyzed using Delaunay tessellation and correlated with correspond-
ing effective diffusion coefficients of the packings. Revised version of this chapter is planned to be
submitted to Journal of Chromatography A.

7.1 Introduction
The transport properties of porous media are a central theme of research in physics, chemistry,
geology, and engineering, affecting such diverse fields as molecular diffusion in supercooled liquids
and glasses, separation of chemical compounds by chromatography, oil recovery and migration of
soil pollutants, ground water engineering and dam building. The ability to predict the transport
properties of a porous medium from the knowledge of its pore space architecture is of fundamen-
tal interest.89,90 Traditionally, structure–transport correlations for porous media were established
either by fitting experimental data or by using specific, simplified (often 2D) models to solve the
fundamental transport equations. The structural properties of the porous medium were described
by macroscopic, experimentally accessible parameters, such as the density or porosity (void vol-
ume fraction). Since the last quarter of the 19th century,339 for example, scientists have sought the
relation between obstructed diffusion in a porous medium and its porosity. Instead of the diffusion
coefficient, the diffusive tortuosity τ is often used in equations. It is defined as:

1

τ
=
Deff

Dm

= lim
t→∞

D(t)

Dm

, (7.1)

89 J. Bear. Dynamics of fluids in porous media. Dover Publications, 1988.
90 F. A. L. Dullien. Porous media: fluid transport and pore structure. 2nd ed. Academic Press, 1992.

339 J. C. Maxwell. A treatise on electricity and magnetism. 2nd ed. Clarendon Press, 1881.
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where D(t) is the time-dependent diffusion coefficient of a tracer in the porous medium, Deff its
asymptotic (steady-state) limit, and Dm is the diffusion coefficient of the tracer in bulk solution.166

Chromatographic literature uses the inverse of the diffusive tortuosity, the obstruction factor, which
directly gives the extent to which free diffusion of a molecule in solution is hindered (obstructed)
by the porous medium. Although we prefer the obstruction factor as an illustrative descriptor of
effective diffusion in a porous medium over the diffusive tortuosity, which is usually imagined
as the winding pathways through a porous medium, we will use the diffusive tortuosity in the
following because of its tradition in the physics and engineering community.

Various tortuosity–porosity correlations, empirical as well as theoretical, are found in the
literature.340,341,† Although it is acknowledged that the diversity of porous media precludes the
existence of a universal tortuosity–porosity relation, the notion exists that it can be found for a
well-defined porous medium, such as a random packing of hard objects of equal shape.342 Indeed,
the proposed correlations for such packings339,342–348 do not account for the possibility that the
individual arrangement of the obstacles in the packing, i.e., the packing microstructure, influences
diffusion, and thus convey the expectation that the tortuosity of a random packing of uniform
spheres is solely determined by the packing’s porosity.

On the other hand it is known, e.g., from the common experience of packing and running
chromatographic columns, which are packed beds of spherical particles, that random sphere pack-
ings of similar porosity may have rather different microstructures and transport properties, such
as hydrodynamic dispersion coefficients.6 The possibility to characterize random sphere packings
by the heterogeneity of their microstructures was recently recognized and expounded in numer-
ical simulation studies.335,336 Aste and Di Matteo335 have linked the structural organization of a
packing to its Voronoi volume distribution (VVD), for which they deduced the functional form of a
k-gamma distribution. The value of the shape parameter k of this distribution was then proposed
by Schenker et al.336 as a measure for the microstructural degree of heterogeneity (DoH) found in
computer-generated packings of coagulated colloidal particles. And we have shown in an extensive
numerical simulation study that standard deviation and skewness of the VVD are sensitive measures
of hydrodynamic dispersion in unconfined, monodisperse, random sphere packings, establishing a
correlation between disorder and dispersion in a packing (Chapter 6).

166 J. M. P. Q. Delgado. Heat Mass Transfer, 42: 279–310, 2006.
340 B. P. Boudreau. Geochim. Cosmochim. Acta, 60: 3139–3142, 1996.
341 L. Shen and Z. Chen. Chem. Eng. Sci., 62: 3748–3755, 2007.
†There is no consensus on the definition of tortuosity in the literature. In fact several definitions of tortuosity, related
to various experimentally accessible quantities or theoretical models, co-exist.

342 M. Matyka, A. Khalili, and Z. Koza. Phys. Rev. E, 78: 026306, 2008.
343 H. L. Weissberg. J. Appl. Phys., 34: 2636–2639, 1963.
344 E. Mauret and M. Renaud. Chem. Eng. Sci., 52: 1807–1817, 1997.
345 J. P. du Plessis and J. H. Masliyah. Transp. Porous Media, 3: 145–161, 1988.
346 M.-J. Yun et al. Chin. Phys. Lett., 22: 1464–1467, 2005.
347 P.-Y. Lanfrey, Z. V. Kuzeljevic, and M. P. Dudukovic. Chem. Eng. Sci., 65: 1891–1896, 2010.
348 E. du Plessis, S. Woudberg, and J. P. du Plessis. Chem. Eng. Sci., 65: 2541–2551, 2010.

6 G. Guiochon et al. Fundamentals of preparative and nonlinear chromatography. 2nd ed. Elsevier, 2006.
335 T. Aste and T. Di Matteo. Phys. Rev. E, 77: 021309, 2008.
336 I. Schenker et al. Phys. Rev. E, 80: 021302, 2009.
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In this chapter, we challenge the expectation that the tortuosity of a random sphere packing
is independent from its microstructure by a random walk simulation of diffusion in computer-
generated packings of unconfined, uniform, impermeable spheres. The tortuosity–porosity scaling
of random sphere packings has been compared with those of periodic packings,138 but differences
between random packings of different microstructures have so far not been explored. Six distinct
packing types with different microstructures were generated in the porosity range between ε =

0.366 and ε = 0.46, commonly referred to as the random-close and the random-loose packing limit,
respectively.171 We compute and compare the effective diffusion coefficients for each packing type
and porosity to investigate if and how the resulting tortuosity–porosity curves reflect the different
packing types.

7.2 Numerical section
Isotropic, random, unconfined packings of monosized, hard, impermeable spheres with dimensions
of ca. 10 dp × 10 dp × 70 dp (where dp is the sphere diameter) were generated computationally,
applying periodic boundary conditions in all three dimensions. The chosen packing size was suffi-
cient for statistical analysis of the packing microstructure and void space as well as for simulation
of diffusion up to the asymptotic limit.

Six distinct packing types were generated by variation of the generation algorithm and its
parameters. Four packing types (Rx0.001, R, S, Sx2) were generated with a modified Jodrey–
Tory (JT) algorithm and two (Ωx0.05, Ωx0.95) with a Monte Carlo algorithms. Description of the
generation algorithms and corresponding algorithm parameters is given in Subsections 1.1.1 and
1.1.2.

Each packing type was generated at six porosities (ε = 0.366, 0.38, 0.40, 0.42, 0.44, 0.46)
between the random-close and the random-loose packing limit, with one exception: we were not
able to generate Sx2-packings at ε = 0.366. To account for statistical variations, ten individual
packings of each type and porosity, 350 packings in total, were generated. Results reported refer to
the mean of the values from all ten individual packings of a given type and porosity.

For simulation of diffusion, the packings were discretized on a uniform cubic lattice, where
each node was assigned as either “solid” or “fluid” according to its position within or outside the
closest sphere, respectively. Two grid resolutions, 30 nodes/dp and 60 nodes/dp, were evaluated to
test their influence on the simulated diffusion coefficients (Table 7.1). Respective grid sizes were
approximately 300×300×2100 (30 nodes/dp) and 600×600×4200 (60 nodes/dp). Additionally, we
used a smoothed spheres representation of the spheres’ boundaries. Here, discretization is omitted
and random walk takes place between spheres with smooth as opposed to stair-step contours. If
not stated otherwise, results discussed were obtained with the smoothed spheres approach, for
example as used by Maier and Bernard in simulations of hydrodynamic dispersion.85

Diffusion in the generated packings was simulated by a random walk particle tracking tech-
nique using 5 · 106 tracer particles (Subsection 1.4.2). Time-dependent diffusion coefficients D(t)

138 A. S. Kim and H. Chen. J. Membr. Sci., 279: 129–139, 2006.
171 C. Song, P. Wang, and H. A. Makse. Nature, 453: 629–632, 2008.
85 R. S. Maier and R. S. Bernard. J. Comput. Phys., 229: 233–255, 2010.
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in a given direction were calculated from the tracer displacements as described in Subsection 1.4.3.
D(t) was calculated for thirteen different directions. Isotropic diffusion behavior was found for
all packing types. Effective diffusion coefficients Deff were determined from the asymptotes of the
time-dependent diffusion curves, and the respective tortuosity τ was calculated with equation (7.1).
Total simulation time for all 350 generated packings was∼110 hours on 2048 Blue Gene/P processor
cores.

For Voronoi and Delaunay tessellations of the generated packings we used MATLAB R© 7.0 built-
in routines, which are based on the QUICKHULL algorithm introduced by Barber et al.337

7.3 Results and discussion
7.3.1 Packing generation and microstructure
Depending on packing porosity, the six generated types of unconfined, monodisperse, random
sphere packings possess different microstructural degrees of heterogeneity (DoH). The DoH or
packing-scale disorder of the generated packings is described by the standard deviation and skew-
ness of the respective Voronoi volume distributions (VVDs) (Figure 7.1). All packing types gen-
erated with the JT-algorithm exhibit the same DoH at ε = 0.366. The limited space available at
the random-close packing limit restricts the possible placement of spheres, so that all JT-packing
types have highly similar microstructures. As the DoH of the packings increases along with the
porosity, differences between the packing types emerge and intensify towards the random-loose
packing limit (ε = 0.46). The disorder–porosity dependence of the four JT-packing types reflects
their designated homogeneity in the order: Rx0.001 < R < S < Sx2. Hydrodynamic dispersion in
these packing types is correlated to their DoH or packing-scale disorder (Chapter 6).
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Figure 7.1: Standard deviation σ (left) and skewness γ (right) of the packing’s Voronoi volume distributions as a
function of porosity ε.

At ε = 0.46, both MC-packing types are more homogeneous than the least disordered JT-
packing type (Sx2), and for the Ωx0.95-packing type this remains the case throughout the whole

337 C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. ACM Trans. Math. Software, 22: 469–483, 1996.
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Figure 7.2: Voronoi volume distributions of the packing types generated with a) the Monte Carlo method and b) the
Jodrey–Tory algorithm at selected porosities ε.

investigated porosity range (Figure 7.1). Considering that MC-packing generation starts from a
lattice-based distribution of sphere centers, this is not unexpected. Ωx0.95-packings essentially
show the same trend upon densification as the JT-packing types, i.e., a decrease of packing-scale
disorder, only with a smaller slope. Ωx0.05-packings, however, behave differently: their DoH goes
through a minimum at ε = 0.40, and then increases so that at ε = 0.366 the Ωx0.05-packing has
the highest packing-scale disorder among all generated packing types. Why? The MC-algorithm is
known to incorporate dense, highly ordered regions into the packings if slow compression rates and
low porosity are combined.29,325 The generic microstructural difference of the Ωx0.05-packings at
lower porosities shows in the form of their VVDs (Figure 7.2). As opposed to the sharp, symmetrical
VVDs of all other packing types at ε < 0.40, the VVDs of the Ωx0.05-packing type widen and skew.
They are expanded towards smaller Voronoi volumes, which correspond to the more densely packed
regions. The irregular occurrence of dense and more loosely packed regions in a packing translates
to more disorder on the packing scale.

7.3.2 Packing-scale disorder and tortuosity
Figure 7.3a contains the results of simulating effective diffusion in the void space of the generated
packings in the form of tortuosity–porosity data. At first glance, the tortuosity–porosity data of
the JT-packing types reflect their relative packing-scale disorder as captured by the VVDs (Fig. 2):
i) all JT-packing types have identical tortuosity (τ = 1.486) at ε = 0.366, ii) differences between
the packing types emerge and increase with porosity, and iii) at ε = 0.46, the most homogeneous
JT-packing type, Sx2, has the lowest tortuosity (τ = 1.373) and the most heterogeneous JT-packing
type, Rx0.001, the highest tortuosity (τ = 1.403). R- and S- packings, however, despite their
different DoH, display identical tortuosities (within the limits of statistical variations) throughout
the investigated porosity range. The varied JT-algorithm parameters, initial distribution of sphere

29 A. Z. Zinchenko. J. Comput. Phys., 114: 298–307, 1994.
325 M. R. Schure and R. S. Maier. J. Chromatogr. A, 1126: 58–69, 2006.
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Figure 7.3: a) Tortuosity–porosity data for the generated packing types based on simulation of effective (asymptotic)
diffusion with the smoothed spheres approach. Statistical variations among individual packings of a given type and
porosity are expressed by 95% confidence intervals calculated using the standard error of the mean. b) Effect of grid
resolution and representation of the spheres’ surface on the simulated tortuosity–porosity data for Rx0.001- and Ωx0.05-
packing types.

centers and displacement length scaling constant, introduce microstructural differences on two
different length scales: the former influences the packing microstructure on the packing scale (S-
type packings are more homogeneous than R-type packings), whereas the latter acts on a much
smaller scale. Expressed in terms of the packing void space, the value of the displacement length
scaling constant affects the pores and their connecting pathways to adjacent pores, the pore throats.
Because the same value for the displacement length scaling constant was used in the generation
of R- and S-packings, their identical tortuosity–porosity curves suggest that the influence of the
packing heterogeneity on diffusion is restricted to the pore scale.

MC-packings are less tortuous than JT-packings, with tortuosity values between τ = 1.335 at
ε = 0.46 and τ = 1.430 (Ωx0.05) or τ = 1.454 (Ωx0.95) at ε = 0.366. Differences between the two
MC-packing types emerge and increase upon densification as was observed for the DoH, but the
Ωx0.05-packing type has the lowest tortuosity among all generated packing types throughout the
whole porosity range. This is another indicator that packing-scale disorder is not the determining
influence for diffusion.

Figure 7.3 demonstrates that the packing microstructure influences diffusion in monodisperse
random sphere packings. A comparison with Figure 7.1 reveals that — contrary to hydrodynamic
dispersion (Chapter 6) — the effective diffusion coefficient does not scale with the DoH or packing-
scale disorder. The influence of the packing microstructure on diffusion is small, effecting merely
a 2% difference at ε = 0.46 between the JT-packing types Sx2 and Rx0.001, and similarly a ca. 2%

difference at ε = 0.366 between the two MC-packing types. However, the observed influence of the
packing microstructure on diffusion is not due to statistical variations among individual packings
of a given type and porosity, as the confidence intervals in Figure 7.3a prove.
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7.3.3 Tortuosity–porosity relation and grid resolution
One of the earliest correlations was proposed on a theoretical basis by Weissberg343 as a lower
bound for the tortuosity in random arrangements of freely overlapping spheres:

τ = 1− 0.5 ln ε. (7.2)

In the modified form of

τ = 1− p ln ε (7.3)

Weissberg’s correlation has found corroboration from experiments340,344,349 and simulations.342 For
example, the coefficient was determined as p = 0.49,344,349 p = 0.77,342 or p = 2.340 Although the re-
stricted applicability of theoretical correlations is often stated as their weak point, the success of the
modified Weissberg correlation proves that theoretical correlations may find a wider applicability
than assumed from the underlying model.

Table 7.1: Fit of the tortuosity data to the modified Weissberg equation, equation (7.3), for different representations of
the spheres’ boundaries in the simulations.

Stair-step (30 nodes/dp) Stair-step (60 nodes/dp) Smooth spheres

Packing type p R2 p R2 p R2

Rx0.001 0.587 0.983 0.541 0.959 0.500 0.877
R 0.582 0.996 0.538 0.981 0.496 0.943
S 0.583 0.997 0.537 0.986 0.497 0.938
Sx2 0.566 0.964 0.521 0.981 0.486 0.989

Ωx0.95 0.509 0.903 0.467 0.947 0.437 0.967
Ωx0.05 0.496 0.967 0.456 0.990 0.426 0.991

The simulated data of Figure 7.3 demonstrate that establishing a tortuosity–porosity relation
for random sphere packings requires consideration of the packing microstructure. We fitted our
simulated tortuosity data to equation (7.3) using p as an adjustable parameter to evaluate if the
influence of the packing microstructure may simply be accounted for by a coefficient. The results
along with the correlation coefficients R2 for the fits are listed in Table 7.1. The coefficient for
Rx0.001, R-, and S-packings is p ≈ 0.5, the value predicted by Weissberg,343 whereas the coefficient
for the Sx2-packing type is closer to p = 0.49, the value introduced by Mauret and Renaud.344

MC-packings are set apart by smaller p-values (p = 0.43–0.44). If we rank the six packing types
according to the relative position of their tortuosity curves in Figure 7.3a as Ωx0.05 < Ωx0.95 <
Sx2 < S < R < Rx0.001 and equate this sequence with an increasing degree of heterogeneity
around individual pores in the packings, then the calculated p-values can be said to increase with
the heterogeneity around the pores. Interestingly, the correlation coefficients show the opposite
trend, i.e., adherence to the modified Weissberg equation appears to be better for packings with
less pore-environment heterogeneity. In summary, however, the correlation coefficients are uncon-

349 M. Barrande, R. Bouchet, and R. Denoyel. Anal. Chem., 79: 9115–9121, 2007.
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vincing and lead to the conclusion that diffusion in monodisperse random sphere packings is not
adequately represented by a modified Weissberg correlation. The heterogeneity around a packing’s
pores is expected to vary with porosity and therefore cannot be captured by a porosity-independent
coefficient.

The simulated data discussed so far were received using an approach, where the packing’s
spheres have smooth as opposed to stair-step contours. The adequate geometrical representation
of the spherical obstacles in the packing is important for modeling diffusion, because the path of a
tracer around a ragged surface is longer than around a smooth one. Simulating diffusion around
“ragged spheres,” even with a comparatively high grid resolution of 60 nodes/dp, yields not only
exaggerated tortuosity values (as exemplarily shown for two selected packing types in Figure 7.3b),
but also raised p-coefficients for the tortuosity–porosity dependence (Table 7.1).

7.3.4 Delaunay tessellation of the pore space
Spatial tessellation of a packing into Delaunay simplices has been shown to be especially suited to
characterize the packing void space.322,333,350–354 Delaunay tessellation divides monodisperse sphere
packings into irregular tetrahedra, whose corners (vertices) are the centers of four closest (but not
necessarily touching) spheres that enclose a pore. The packing space is completely filled with non-
overlapping tetrahedra, each containing solid and void components: the void volume represents
the pore volume, and the void areas of the tetrahedron’s four faces correspond to the pore throats
that form the connections to the four neighboring pores. The void face areas can therefore be
considered as the entrance and exit ways for a tracer particle into or out of a given pore.

We evaluated several metric properties of Delaunay tetrahedra for their ability to represent
the influence of the packing microstructure on diffusion: volume; maximum, minimum, and aver-
age void face areas; maximum, minimum, and average edge length; and the T -measure,320 which
quantifies the deviation of the Delaunay tetrahedra from regularity (Delaunay simplices of crys-
talline packings are quasi-regular tetrahedra or quartoctahedra); also the distances of the center
of mass to the center of the faces, as well as various combinations of metric properties. The mean,
standard variation, and skewness of each metric property was calculated and its porosity-scaling
compared to those of the simulated diffusive tortuosity values. The mean of the maximum and the
mean of the minimum void face area — but not that of the average void face area — gave close
results, pointing to the limiting properties of a pore rather than its average properties as a possible
measure. We found a good representation for the tortuosity–porosity scaling of all packing types
by considering two limiting properties for each pore, namely the minimum and maximum void
face areas, Amin and Amax, respectively, of each Delaunay tetrahedron. The standard deviation σ

322 K. E. Thompson and H. S. Fogler. AIChE J., 43: 1377–1389, 1997.
333 J. Q. Xu, R. P. Zou, and A. B. Yu. Granular Matter, 9: 455–463, 2007.
350 S. Bryant, G. Mason, and D. Mellor. J. Colloid Interface Sci., 177: 88–100, 1996.
351 R. Al-Raoush, K. Thompson, and C. S. Willson. Soil Sci. Soc. Am. J., 67: 1687–1700, 2003.
352 R. Y. Yang et al. J. Colloid Interface Sci., 299: 719–725, 2006.
353 S. Rémond, J. L. Gallias, and A. Mizrahi. Granular Matter, 10: 329–334, 2008.
354 N. Reboul, Eric Vincens, and B. Cambou. Granular Matter, 10: 457–468, 2008.
320 A. V. Anikeenko, N. N. Medvedev, and T. Aste. Phys. Rev. E, 77: 031101, 2008.
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Figure 7.4: a) Porosity-scaling of σ(Amin/Amax), the standard deviation of the ratio between the minimum (Amin)
and the maximum void face area (Amin) of each Delaunay tetrahedron around a pore. b) Porosity-scaling of
σ(Amin)/σ(Amax), the ratio of the standard deviations of Amin and Amax.

of the ratio of Amin and Amax calculated for each tetrahedron, σ(Amin/Amax), over all pores in a
packing, Figure 7.4a, mimics the porosity-scaling of the simulated diffusive tortuosity values for
each of the six packing types, Figure 7.3a.

It is elucidating to compare the porosity-scaling of σ(Amin/Amax) with that of σ(Amin)/σ(Amax),
Figure 7.3b. The first measure considers the limitations of an individual pore first before summing
over all pores in the packing, the second measure does not and fails to represent the influence of
the packing microstructure on diffusion. Considering the process of diffusion in the packings and
how this quantity is computed, Figure 7.3a reflects the independence of a tracer particle’s motion
from the rest of the tracer ensemble as well as from its own previous motions. The probability for
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Figure 7.5: a) Collapsed tortuosity–porosity data for all packing types. b) Scatter of collapsed tortuosity–porosity data
relative to the Rx0.001-packing type.

diffusion of a tracer particle into or out of a given pore is determined by the pathways connected
to the pore, i.e., by the size of the pore throats, which are here represented by the void face areas
of the Delaunay tetrahedron around the pore. The chance of a tracer to find a way out of a given
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pore is maximal, if it encounters the pore throat with the largest cross section (Amax), and minimal,
if it encounters the smallest pore throat (Amin). We interpret the ratio (Amin/Amax) as related to
the probability for effective diffusion into or out of a given pore, and judge the standard deviation
σ of this ratio as a suitable descriptor of the influence of the packing microstructure on effective
diffusion.

To visualize the quality of the identified structural descriptor, we provide a unified represen-
tation of the tortuosity–porosity data for all packing types. If the simulated tortuosity data τ are
divided by [σ(Amin/Amax) + 0.67], the data points collapse onto a curve, which can be fitted as a
linear function of ε with a correlation coefficient of R2 > 0.99 (Figure 7.5a). Figure 7.5b plots
the ratio of the collapsed tortuosity data of the different packing types normalized to the Rx0.001-
packing type. The scatter is small (within 1%), underlining the quality of the found scaling factor.
On the other hand, the scatter is not random for the Ωx0.05-packing type and the data points are
more united at higher porosities. Also, the necessity of adding a constant number to σ(Amin/Amax)

to receive collapsed tortuosity data reminds us that the identified structural descriptor is insufficient
to describe fully the scaling of effective diffusion and that further research is required to achieve
this goal.

7.4 Conclusions
We have shown that diffusion in monodisperse random sphere packings is not solely defined by the
packing porosity, but also depends on the packing microstructure, which affects value and porosity-
scaling of the effective diffusion coefficient. Diffusion is influenced by the degree of structural
heterogeneity that exists around individual pores in a packing. We have proposed a suitable struc-
tural descriptor for this influence based on the metric properties of Delaunay tetrahedra, namely
the standard deviation of the ratio of minimum to the maximum void face area for each Delau-
nay tetrahedron in the tessellation. The correlation to the limiting properties of individual pores
(i.e., minimum to maximum pore throat cross-section) reflects the piecewise nature of diffusion,
which is calculated from independent tracer motions, contrary to flow-field dependent (convective)
dispersion, which is correlated to the disorder (or DoH as captured by the VVD) made up by the
network of pore-scale heterogeneities in the packing.

In a previous study of the time and length scales of dispersion in unconfined, monodisperse,
random sphere packings, we had shown that microstructural heterogeneities occur on the scale of
1–2 dp (Chapter 6). Whereas for dispersion the pattern of this heterogeneity in the whole packing
is relevant, for diffusion it is only the standard deviation of the pore-scale heterogeneity over
the packing that counts. Packings with identical DoH (e.g., the JT-packing types at ε = 0.366)
have the same hydrodynamic dispersion coefficient and the same effective diffusion coefficient.
But two packings with different dispersion coefficient can nevertheless have an identical diffusion
coefficient, if both packings have the same degree of heterogeneity as seen from the environment of
individual pores (e.g., R- and S-packings). Also, a packing may have a homogeneous microstructure
around individual pores and thus a high effective diffusion coefficient (low tortuosity), but a
disordered microstructure on the packing scale and thus a high dispersion coefficient (e.g., the
Ωx0.05-packing type).
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In this thesis, mass transport processes (flow, diffusion, and hydrodynamic (eddy) dispersion) in
random sphere packings were investigated by large-scale numerical simulations. Here “large-scale”
denotes that the time and lengths scales, on which transport in the packings was simulated, ranged
from the pore-scale (∼ 0.1 dp, where dp is the diameter of a spherical particle), over the particle-
scale (1–2 dp) up to the confinement-scale (e.g., column diameter, ∼ 20 dp). Combination of the
lattice Boltzmann method and random walk particle tracking, making efficient use of the fastest
supercomputers available today, enabled numerical solutions of the advection–diffusion problems
in complex geometries over a wide range of Péclet numbers (Pe ≈ 10−1 –103).

Chapters 2 to 4 form the first part of the thesis. They address the influence of the conduit
cross-sectional geometry on hydrodynamic dispersion in confined random sphere packings. Cir-
cular, quadratic, rectangular, and semicircular (Chapter 2), as well as trapezoidal cross sections
(Chapter 3) were studied, thus gradually approaching the irregular cross-sectional geometry of a
real-life microchannel (Chapter 4). The simulations revealed a strong effect of the conduit cross-
sectional geometry on hydrodynamic dispersion, such that the dispersion coefficient of a packing
with non-optimal geometry may be up to 50 times higher than that of a cylindrical packing at the
same bed porosity (cf. Figures 2.6 and 3.6). The time evolution of the hydrodynamic dispersion
coefficients provided important information for the analysis: it was found that i) the time to reach a
close-to-asymptotic value of the dispersion coefficient (lateral “equilibration” time) correlates with
the maximal distance between different axial velocities specific to a particular conduit geometry,
and ii) asymmetric conduit geometries with longer equilibration times are typically characterized
by higher dispersion coefficients (a result that was confirmed experimentally355). It was demon-
strated that the presence of corners in a conduit causes the formation of channels of advanced
(with respect to the average) fluid flow velocity, and that the resulting maldistribution of the flow
field significantly increases the equilibration time and the hydrodynamic dispersion coefficient of
the packing. Finally, very good agreement with experimental data was found for the simulated
dispersion coefficients in the packings, for which the cross-sectional geometry and the particle-size
distribution of the adsorber particles in a microchip separation channel had been reconstructed
(Chapter 4).

Whereas pre-asymptotic dispersion has been investigated by several research groups during the
last decade,18,42,177,180 pore-scale simulations to study close-to-asymptotic hydrodynamic dispersion

355 S. Jung et al. Anal. Chem., 81: 10193–10200, 2009.
18 H. Freund et al. Ind. Eng. Chem. Res., 44: 6423–6434, 2005.
42 R. S. Maier et al. Phys. Fluids, 15: 3795–3815, 2003.

177 F. Augier, F. Idoux, and J. Y. Delenne. Chem. Eng. Sci., 65: 1055–1064, 2010.
180 R. S. Maier, D. M. Kroll, and H. T. Davis. AIChE J., 53: 527–530, 2007.
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in confined random sphere packings have never been undertaken before, probably due to the high
computational requirements.

Part two of this thesis addresses fundamental issues of mass transport in random sphere pack-
ings. Chapter 5 is dedicated to the analysis of the different length scales of structural heterogeneity
in bulk (periodic, unconfined) packings and in cylindrically confined packings. It was shown that
the time to reach close-to-asymptotic dispersion behavior is defined neither by a diffusive nor a
convective, but by a transverse-dispersive time scale. Analysis of the time evolution of the hydro-
dynamic dispersion coefficient based on the transverse-dispersive time scale revealed different
length scales of heterogeneity (pore-, particle-, and packing-scale) and their individual contribu-
tions to the close-to-asymptotic value of the hydrodynamic dispersion coefficient. Compared with
bulk packings, dispersion in confined packings is characterized by significantly higher values of
the dispersion coefficient and a correspondingly longer time to reach close-to-asymptotic behavior.
The results presented in Chapter 5 include an excellent fit of the simulated dispersion coefficients
to the generalized Giddings’ equation (see Figures 5.4 and 5.6), the most rigorous and accurate
equation to describe hydrodynamic dispersion in packed, particulate beds. Such a fit has never
been presented before for experimental or simulated data since the equation was proposed by
Giddings in 1959.286

Chapters 6 and 7 study the influence of the packing microstructure on effective diffusion and
hydrodynamic dispersion in unconfined, monodisperse random sphere packings. Packings gener-
ated with systematically different microstructure and bed porosities between the random-close
and the random-loose packing limit were analyzed with respect to their packing microstructure
applying spatial tessellation techniques (Delaunay and Voronoi tessellations). Mass transport in the
generated packings was simulated and a unique, qualitative correlation found between geometrical
descriptors of their pore structure and the transport coefficients for hydrodynamic dispersion and
effective diffusion. Recent studies have addressed mass transport in an isolated pore356,357 or in
porous structures of a given microstructural disorder,18,75,97,99,123,177,358–361 which for random sphere
packings (experimental as well as simulated) is determined by the packing generation protocol.
The numerical approach and spatial tessellation schemes used in this work are applicable to a
variety of granular materials, and we believe it constitutes a systematic route towards quantitative
structure–transport relationships for granular porous media.

286 J. C. Giddings. Nature, 184: 357–358, 1959.
356 S. Blanco and R. Fournier. EPL, 61: 168–173, 2003.
357 O. Bénichou et al. EPL, 70: 42–48, 2005.
75 M. A. van der Hoef, R. Beetstra, and J. A. M. Kuipers. J. Fluid Mech., 528: 233–254, 2005.
97 D. Vidal et al. Comput. Chem. Eng., 33: 256–266, 2009.
99 D. Coelho, J.-F. Thovert, and P. M. Adler. Phys. Rev. E, 55: 1959–1978, 1997.

123 R. S. Maier et al. Phys. Fluids, 12: 2065–2079, 2000.
358 V. Mourzenko et al. Phys. Rev. E, 77: 066306, 2008.
359 A. G. Dixon and M. Nijemeisland. Ind. Eng. Chem. Res., 40: 5246–5254, 2001.
360 A. V. Anikeenko et al. J. Struct. Chem., 50: 403–410, 2009.
361 K. Schnitzlein. Chem. Eng. Sci., 56: 579–585, 2001.
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