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We perform the viscosity-independent Stokes flow simulations in regular sphere

packings using the two-relaxation-times (TRT) lattice Boltzmann Method (LBM) with

the simple bounce-back rule (BB). Our special discretization procedure reduces the

scatter in integral quantities, such as drag force, and quantifies the solution convergence

error. We assume transition to linear (−1) convergence rate for different sets of TRT

parameters and use this assumption to provide a simple extrapolation scheme. After

establishing the accurate reference values of drag for a wide range of porosities, 0.26–

0.78, we show a ten-fold decrease in drag error using the suggested extrapolations.

This error decrease allows the simple LBM/BB scheme reach accuracy of the high-

order interpolated boundary schemes. The suggested extrapolation approach is

straightforward to apply in porous media, whose pore space can be discretized at

several resolutions.
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I. INTRODUCTION

Over the last few decades, the lattice-Boltzmann method (LBM) has been widely used

to calculate the single- and two-phase flow of incompressible and immiscible fluids1–4 in the

morphologically and topologically complex pore space of clastics and carbonates. In addition

to accuracy of LBM discretizations, the pore space itself can never be described accurately5–8

by the finite resolution reconstructions. This confluence of difficulties with numerical and

imaging approximations leads to an interesting question: What fraction of computational

inaccuracy in flow and transport calculations is caused by the pore space discretization and

how much of it originates in the flow calculations with LBM? In this paper, we try to provide

quantitative answers pertinent to the latter.

By extending an earlier result9, we derive a simple method of increasing accuracy of one

of the simplest LBM implementations. The key reasons for LBM’s popularity in calculating

incompressible flows in porous media have been (i) relative simplicity of its implementation

and (ii) acceptable accuracy while using regular meshes to resolve complex solid boundaries.

Kinetic origin of LBM assumes the use of collision rules for evolving its particles; one

of the popular set of rules is the Bhatnagar–Gross–Krook collision operator (BGK)10–12.

Despite its popularity, BGK is well known for the dependency of permeability (or drag

force) on the viscosity of simulated fluid13–15. Reformulation of the matrix–collision model16

resulted in the multiple-relaxation-times collision operator (MRT) with several adjustable

parameters. A reduced version of MRT developed later, the two-relaxation-times (TRT)

collision operator17,18, is well suited for solving advection–diffusion problems and performing

Navier–Stokes simulations19.

Until now, choices of relaxation parameters in the TRT and MRT schemes have remained

an open question19. Analytical evaluation of the TRT operator demonstrated that a specific

combination Λ (known as “magic number”19) of its two relaxation parameters controls the

viscosity-independent steady solutions in any geometry. In Poiseuille flow simulations using

bounce-back rule (see below) with walls located midway the intersected links, Λ = 3/16 and

Λ = 3/8 provide exact velocity profile in a channel oriented horizontally or diagonally with

respect to the lattice13; the value of Λ = 1/8 gives the exact average flow rate through the

channel. For flows in complex geometries, these values of Λ provide solutions of acceptable

accuracy for medium resolutions and above, e.g.9. It was established9,20 that values of Λ
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outside of the interval [1/8, 3/8] can change significantly the simulated flow field in porous

media. Therefore, the parameter Λ can be a powerful tool that controls simulation accuracy.

Regular sphere packings represent a good underlying geometry to assess accuracy of LBM

simulations in porous media: they are simple enough to be approached (semi-)analytically,

yielding a number of independently-obtained solutions21–23. At the same time, the con-

verging/divergening flow in packings makes this geometry clearly more complex than flow

between two parallel plates or through a square duct. It is also worth mentioning that sphere

packings represent real systems in chromatography24 and chemical engineering25.

Popularity of the lattice Boltzmann method26–29 as a flow solver can be attributed to its

acceptable accuracy while using the bounce-back boundary condition (BB)9,30, for which the

lattice populations facing a solid voxel are reflected back from it. Simplicity, locality, and

robustness of BB made it attractive among other boundary rules. However, detailed analysis

of numerical LBM/BB solutions did not prove their convergence to accurate solutions in

complex geometries14,15,30,31, despite theoretical analysis suggesting that this must be the

case32. Inaccuracies of LBM/BB simulations have led to various improvements, such as

effective hydrodynamic radius33 or extrapolation of simulation results towards the infinitely

high discretization resolution34.

Validation of flow simulations in regular packings against independent solutions is often

difficult because of the significant scatter of LBM/BB results. This scatter leads to statements

about the different convergence behavior of random and regular packings or to questioning

convergence of LBM/BB to the true solution30. In addition, the ubiquitous use of the −2

convergence rate for extrapolation34,35, complicates understanding of convergence of LBM/BB

in complex geometries.

The interpolated or multi-reflection boundary condition (IMR) algorithms solve for the

intersections of analytical boundary and LBM lattice links. This feature makes LBM/IMR

significantly more accurate than LBM/BB. Solutions obtained with the IMR boundary

conditions demonstrate much weaker dependency on Λ compared with the bounce-back rule9,15.

Despite improved accuracy and convergence rates9,14,30,31,36, implementation of LMB/IMR

requires additional programming to modify flow solver30 for each type of considered geometries,

e.g., for sphere packings vs. fractures. It has been reported that i) the interpolated boundary

conditions do not always conserve the total fluid mass14,36, and ii) some of the advanced

boundary condition schemes require more-than-first lattice neighbor, thus diminishing LBM
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locality and degrading scaling efficiency of parallel LBM implementations37.

In this work, we focus only on the bounce-back boundary condition and extend the results

of an earlier study by Khirevich et al.9. Using the previously introduced discretization

procedure, we reduce significantly the scatter of the solutions. With less scatter, we analyze

the behavior of numerical error and observe convergence to the −1 rate for a wide range of

TRT parameters. We suggest a simple extrapolation approach and demonstrate a ten-fold

reduction of relative error in integral quantities such as permeability or drag.

II. SIMULATION APPROACH

We solve the Stokes problem in a periodic domain for the momentum ~j of an incompressible

fluid driven by a body force ~B:

µ∆~j + ~B = 0, (1a)

~j = ρ0~u, (1b)

where µ is the kinematic viscosity, ρ0 is the fluid density, and ~u is the fluid velocity. The

Stokes flow regime is typical of the porous media in which inertia is dominated by viscosity.

The average normalized drag force Fd exerted on a single sphere (cf. van der Hoef et al.34)

is:

Fd =
d2sp

18(1− ε)k
, (2)

where dsp is the sphere diameter, ε is the porosity, and k is the permeability. Later in this

work, we consider dsp to be expressed in lattice units and ε is taken as the ratio of fluid

voxels to the total number of voxels. Permeability is calculated using Darcy’s law:

k ≡ kx =
µεjx
Bx

(3)

In the equation above, we assume that the simulation domain is isotropic and the permeability

tensor is a scalar.

A. Two-relaxation-times lattice Boltzmann scheme

To solve eqs. (1), we employ the two-relaxation-times lattice Boltzmann method17–20,38.

LBM simulates behavior of fictitious particles that reside on a discrete cubic lattice and
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evolve at discrete time steps t. Each lattice site ~x is occupied by Q (= 19 in this study)

particle populations fq, consisting of one immobile particle and Qm = Q − 1 mobile ones.

The lattice sites are interconnected by Qm velocity vectors cq. Using a symmetry argument,

we group the velocity vectors into “links” {cq, cq} such that cq = −cq. In each time step, the

particles propagate along the lattice vectors and collide according to the following rule:

fq(~x+ ~cq, t+ 1) = f̃q(~x, t), (4)

f̃q(~x, t) = [fq − s+(f+
q − e+q )− s−(f−

q − e−q ) + S+
q + S−

q ](~x, t), (5)

q = 0, . . . , Qm/2

f̃q(~x, t) = [fq − s+(f+
q − e+q ) + s−(f−

q − e−q ) + S+
q − S−

q ](~x, t), (6)

q = 1, . . . , Qm/2

where f±
q = (fq±fq)/2, tilde ∼ denotes the post-collision state, and the equilibrium functions

e0 and e±q are calculated using the local mass ρ and momentum ~J as

ρ = f0 + 2

Qm/2∑
q=1

f+
q , ~j = ~J +

1

2
~B, ~J = 2

Qm/2∑
q=1

f−
q ~cq, (7)

e+q = c2stqρ, e−q = tq( ~J · ~cq), and e0 = ρ− 2

Qm/2∑
q=1

e+q . (8)

Here c2s denotes the speed of sound and tq are the isotropic weights of 1/6 and 1/12 for the

6 “horizontal” and 12 “diagonal” lattice vectors, respectively. The quantity S+ denotes the

mass sources, here equal 0, while S− is the body force driving the fluid:

S−
q = tqρ0( ~B · ~cq). (9)

The relaxation parameters s± are limited to the ]0, 2[ interval, and a particular value of s+

defines the fluid viscosity as ν = (1/s+ − 1/2)/3, while the parameter s− is free-tunable. Let

us introduce the following ratio between s+ and s−:

Λ = (1/s+ − 1/2)(1/s− − 1/2), (10)

which is also known as “magic number”19. The ratio Λ controls the location of zero-velocity

boundary within the simulated geometry (for instance, see Figure 1 in9), and therefore defines

the stationary flow field up to machine accuracy for any combination of the two relaxation
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parameters s± as well as body force values17,19. In other words, Λ directly controls the output

integral quantities such as total momentum, permeability, and drag force.

All the results in this paper can be reproduced using the BGK collision operator, keeping

in mind the following relations between Λ, fluid viscosity, and the single relaxation parameter

τ of the BGK model:

Λ = 9ν2, (11)

Λ =
(
τ − 1

2

)2
. (12)

In the BGK collision operator, the fluid viscosity is controlled solely by τ . Therefore, selecting

τ at a value that matches the TRT solution with a given Λ fixes the corresponding value of ν.

As a result, a non-optimal combination of the viscosity ν, desired accuracy, and simulation

geometry may negatively impact execution time to reach steady state (see Figure 5 in20 and

Figure 7 in9).

B. Steady-state solution

Evolution of LBM solution in pore-scale simulations typically demonstrates oscillatory

behavior (for example, see Figure 7 in9), which mainly depends on the lattice viscosity as well

as on the geometry of the simulation domain. In this work, our goal is to estimate integral

quantities, such as drag force, and therefore we use the following termination criterion:

M i
T =

∣∣∣∣jix − ji−1
x

jix

∣∣∣∣ < δ, for i = i, . . . , i− T. (13)

which is based on the momentum jx calculated along the direction of the applied body force

Bx > 0. This criterion can be understood as follows: simulation is terminated when the

relative variation of momentum jx between any pair of two consecutive iterations i− 1 and

i does not exceed δ over T previous iterations. We stress the importance of satisfying the

termination rule (13). Otherwise, the evaluation of M i
1 for a single iteration pair (i− 1, i),

even with a very small δ may terminate simulation too early. This can occur at the time of

development of another momentum oscillation, followed by a slow but noticeable change in

jx. Our results are obtained for ε = 10−9 and T = 200, while the fluid viscosity is ν = 0.5

(or λ+ = 0.5).
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C. Discretization

The quality of mapping of analytical boundaries onto a discrete lattice is crucial to the

accuracy of simulations in regular geometries such as periodic arrays of spheres. The main

problem is that by default: i) each periodic cell contains just a few geometrical elements

(spheres) to be discretized, and ii) the discrete lattice must contain an integer number of

nodes along each dimension. In practice, substantial variation in lattice geometry can occur

for a slight change of discretization resolution9. We note that this problem was partially

addressed by Chun and Ladd, see Figure 8 in36, who randomly moved the unit cell with

spheres relative to the lattice and analyzed the corresponding error behavior. In the case

of irregular sphere packings, this problem vanishes when the number of spheres becomes

sufficiently large to sample the underlying lattice in different ways.

In this work, we apply the discretization approach that was suggested previously, see

Figure 5 in9 and the supporting explanations. This approach exploits the periodicity property

of a regular geometry, according to which we replicate a unit cell U times along each Cartesian

direction and take the underlying lattice dimension L not evenly divisible by U . This leads

to the non-integer lattice size per each unit cell Lunit, while having integer L for the whole

lattice. In practice, the use of non-integer values of Lunit significantly reduces scatter in the

simulated drag force (permeability), depicted in Figure 1. Extending the arguments above,

the suggested discretization approach gives the best results when L and U have no common

integer multipliers. For example, taking L = 30 and U = 4 (L mod U 6= 0) results in a drag

value equivalent to the simulation setup with L = 15 and U = 2 because L = 30 and U = 4

have a common multiplier of 2; a better choice for U = 4 and L ≈ 30 is L = 29 or L = 31.

Particular choice of U depends on the resolution and the porosity. From our experience of

dealing with the BCC, FCC, SC packings of touching spheres, very low resolutions of 0.1–1

of lattice nodes per sphere diameter can require as many as U ≈ 10 (resulting in U3 unit

cells), while for high resolutions of several hundred lattice nodes, U = 2 may be sufficient.

It appears that the number of lattice voxels crossed by spheres in different ways is the key

parameter that reduces scatter.

Our discretization approach produces the fully symmetric discrete lattices, i.e., each

discretized geometry has reflection symmetry in all three Cartesian directions. In addition,

we perform a slight variation of the sphere radius dsp around its analytical value in order
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FIG. 1. Drag force vs. discretization resolution (in lattice units per sphere diameter) for simple

cubic packing of touching spheres with ε ≈ 0.476. Green, red, and black colors denote Λ = 0.125,

0.25, and 1.0, respectively. Reference drag value for this geometry is 42.1 (dashed line).

to obtain better agreement with the analytical and discrete porosities. The corresponding

MATLAB scripts are available online39.

D. Considered geometries and reference drag values

In this paper, we deal solely with regular packings of spheres that are commonly used

to validate the numerical Stokes solutions9,15,30,36,40–42 and enable the in-depth comparisons

of numerical simulations with previous works. This type of geometry can be approached

analytically21–23, but at the same time it captures the key features of flow in porous media

and demonstrates more complex flow patterns, relative to open channels or pipes with circular

or quadratic cross sections. We note that our approach is not limited to regular sphere

packings and is applicable to the complex geometries, where the discretization resolution can

be varied.

We consider three basic packing types (Figure 2) with unit cells of cubic shape and assume

that they are filled with spheres of unit diameter. Face-centered cubic packing (FCC) has a

unit cell edge
√

2 long, and is composed of 14 spheres: 6 are located in the centers of each

face while 8 spheres are in the corners of the FCC unit cell. Body-centered cubic packing

(BCC) has one sphere in the cell center and 8 in the corners and its edge is 2
√

3 long. Simple

cubic packing (SC) has unit edge length and a single sphere in the cell center. For all three
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geometries, only parts of spheres that are inside of the corresponding unit cell are considered

in flow simulations.

body-centered
cubic

to
u
ch

in
g

sp
h
er
es

face-centered
cubic

simple
cubic

FIG. 2. Three packing types used in the simulations with unit cells replicated 4 times along each

direction; the actual simulation domain is indicated with the red dashed lines. The middle row

shows packings of fixed porosity (ε = 0.366) while the top and bottom rows depict touching and

diluted packings, respectively.

In this study, we deal with accuracies of 10−3 or better in estimating drag force values.

Special attention is given to the reference drag values because they should be trusted with

accuracy of at least 10−4. A careful examination of the previous non-LBM approaches for

estimating drag in packings of the touching SC, BCC, and FCC spheres reveals disagreement

between the studies by Zick and Homsy22, Sangani and Acrivos21, and Larson and Higdon23

(see Table 5 in9). Therefore, for touching spheres we took drag values obtained from the

high-resolution LBM simulations with the “parabolic” multi-reflection (MCLI) boundary

condition. For the MCLI boundary condition, i) there is almost no dependency on Λ and ii)
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0.26 0.32 0.366 0.48 χ = 0.7 0.784

fcc 432.0 146.5 9.7165 7.7576

bcc 162.8 114.4 8.5631 7.7388

sc 84.85 42.10 6.0042 7.4432

TABLE I. Reference drag values used in this work; packing types and porosities are given in the left

column and top row, respectively. The value of χ = 0.7 is the diameter scaling factor, which equals

to 1.0 when spheres are touching. The factor χ is related to porosity as ε = 1− χ3(1− ε∗) with ε∗

denoting the porosity of a packing with touching spheres. Porosity values in bold are approximate

and calculated as ε∗fcc = 1 − π/
√

18 ≈ 0.26, ε∗bcc = 1 − π
√

3/8 ≈ 0.32, and ε∗sc = 1 − π/6 ≈ 0.48.

Drag values in normal font are taken from the LBM/MCLI simulations9 while bold values are from

the 30-term series expansion by Sangani21. The underlined drag value for the SC packing with the

overlapping spheres and porosity of 0.366 is estimated from the extrapolation approach presented

in this work with dmax
sp ≈ 429 und U = 3.

the fast convergence rates of −3 or −4 provide the practically resolution-independent values

of drag at high resolutions, with > 100 lattice nodes per sphere diameter.

Reducing sphere diameters with the contraction factor χ < 1 increases the distance

between sphere surfaces and results in better agreement among the published studies21–23.

Specifically, at the accuracy of at least 10−4, the literature drag values become identical when

χ ≈ 0.7 or less. Sangani and Acrivos21 provided a series expansion for the estimation of drag

in FCC, BCC, and SC packings, which we adopt here to complement our study with the

accurate drag force values in regular packings of high porosity. The corresponding values for

the three regular packing types are listed in Table I.

The set of reference drag values for the touching and diluted regular packings is extended

to the porosity of 0.366. For this porosity, there are solutions for BCC and FCC geometries

available from Khirevich et al.9. These solutions were obtained at high-resolutions using

LBM with the “parabolic” multi-reflection boundary schemes (MCLI)14. We also support

this porosity with the SC geometry of overlapping spheres. We estimate its drag force with

the approach presented in this paper.
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III. GENERAL BEHAVIOR OF NUMERICAL ERROR

The two-relaxation-times collision operator controls the steady-state drag force solely

through Λ. The Λ-dependency of the numerical solutions obtained with the bounce-back

scheme in three regular packings is demonstrated in Figure 3. As mentioned previously9,

• Λ has the strongest impact on numerical error at low resolutions;

• error is non-monotonic with resolution increase, and it can significantly over- or

underestimate true solution depending on a particular value of Λ; and

• error behavior is similar for random and regular geometries or different porosities

meaning that it is related to the method itself rather than to particular type of porous

media.

In Figure 3, we further extend the understanding of error behavior. The non-monotonic

convergence in Figure 3a–c can be related to the interplay among different error contributions:

away from solid boundaries the lattice Boltzmann method performs with second-order

accuracy32 while the first order13 bounce-back boundary condition is applied at the boundary

nodes. This suggests existence of at least two contributions to the total simulation error, with

quadratic and linear behavior. (There is one more contribution, related to the voxel-wise

integration of three-dimensional flow field when calculating integral quantities such as average

flow rate, but we omit it here.) An important point is that these contributions can have

different signs and therefore compensate each other. This idea was discussed earlier, for

instance in relation to the simulations of hypersonic flows43. Mutual compensation of error

contributions can lead to the very slow transient convergence rates, such as −0.2 . . .− 0.4.

Very slow convergence can be seen in other studies with the standard choice of relaxation

parameters equivalent to Λ = 0.25 (τ = 1 in the BGK collision operator)30,40,41.

The bulk and boundary error contributions could eliminate each other, resulting in

zero total error, but this never happens over the continuously varying resolutions, because

convergence rates of the two contributions are different. In Figure 3d we provide a simple

expression, A/dsp + B/d2sp, which captures most of the error behavior obtained from the

simulations. In fact, Λ can be seen as a parameter controlling the relative impact and sign of

each error contribution.
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FIG. 3. a–c: Relative drag force error as a function of discretization resolution for FCC, BCC, SC

packings of touching spheres; the dependencies are shown for three Λ values. d: a simple model

that mimics variation of the quadratic and linear error convergence rates with resolution; shown

are four different combinations of model parameters A and B.

Figure 4 is a double logarithmic plot of the low and high porosity cases in order to analyze

their convergence rates. Here we consider a) the diluted FCC and BCC packings as well

as the condensed SC packing of overlapping spheres, all three with ε = 0.366; and b) the

FCC, BCC, and SC packings diluted to ε = 0.784. For Λ we took 0.25 and smaller to

exclude negative error values, because for any value of Λ the drag error becomes positive with

increasing resolution, but for Λ > 1 very fine meshes are necessary to observe this transition9.

Figure 4 demonstrates that

• at very low resolutions (dsp < 5) and low values of Λ, different packing types can
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FIG. 4. Relative drag error vs. discretization resolution (in lattice nodes per sphere diameter).

FCC, BCC, and SC packings of porosities ε = 0.366 and ε = 0.784 are considered. The SC packing

with ε = 0.366 has overlapping spheres while the five other geometries are diluted regular packings.

The results are obtained for Λ = 1/512, 0.05, 0.25. The lines indicate various convergence rates:

red denotes the −1.0 rate, while gray is faster and black is slower than −1.0.

demonstrate geometry-specific error behavior as well as very high convergence rates;

• for each porosity and at moderate or high resolutions, the errors weakly depend on a

given geometry and are grouped for a particular value of Λ; and

• depending on value of Λ, error approaches the −1 convergence rate from below (for

Λ = 0.25 or higher) or from above (Λ = 1/512 or lower) for both porosities and all

geometries.

The last statement extends some of the results of the previous work9: at infinitely

high resolution the convergence rate will be −1.0 for any Λ (Figure 13 in9) and, therefore,

extrapolating errors with different values of Λ to very high resolution (> 104) will not allow

them to cross each other (Figure 14 in9).

The facts listed above suggest a simple extrapolation approach we discuss in the next

section.

13



Error analysis and extrapolation in LBM/BB pore-scale simulations

IV. EXTRAPOLATION APPROACH

The convergence rate of the slowest error contribution is −1.0 because of the bounce-

back rule. It can be observed for any Λ with an increase of resolution. However, the

particular choice of Λ defines the resolution region, where the error is dominated by the

−1.0 contribution. It follows that the “magic parameter” Λ can be chosen so as to enforce

transition to the −1.0 convergence rate at lower resolutions. After that any additional

increase in resolution leads to linear error behavior and therefore can be predicted using a

simple extrapolation. From our experience, the value of Λ close to 0.05 leads to the earliest

transition to linear convergence for the considered packings and porosities. Therefore, we fix

Λ to 0.05 for all extrapolation results.

Linear extrapolation requires at least two data points. Because of the residual discrete

noise in the drag force values, even after improved discretization, we take six additional

points (eight in total) to obtain each extrapolated value. There is no justification for this

choice. We simply use additional points to make the extrapolation more robust. However, an

important aspect is the distance between maximum dmax
sp and minimum dmin

sp resolutions in

this set of points. For example, in the right panel of Figure 5 one can see oscillations of drag

values around the extrapolation line. Such oscillations can impact the extrapolation result

if dmax
sp and dmin

sp are too close (e.g., dmin
sp /dmax

sp < 0.95). Taking dmin
sp too far away from dmax

sp

will place dmin
sp in nonlinear region of the drag curve, see Figure 4, which too will negatively

impact the extrapolation result. We found the ratio dmin
sp /dmax

sp = 0.8 to be a good choice,

and use it to collect all extrapolated values. It worth mentioning that geometries with large

amount of irregularly located objects are less impacted by discrete noise, and the statements

above are less applicable.

In Figure 5, we present the extrapolation of drag force described above for the three basic

packing types of touching spheres. In Figure 5 we also show the extrapolation with one of

the standard choices of Λ = 0.25 resulting in τ = 1 for BGK model. For instance, a similar

approach was discussed in the study of Hoef et al. (Figures 2 and 3 in34), in which the

authors assumed quadratic (1/d2sp) error convergence. Use of the −2 extrapolation rate for

the considered geometries and Λ = 0.25 slightly increases error in estimated drag values (data

not shown). Dashed squares highlight the drag values for the highest employed resolutions

using the standard simulation approach with Λ = 0.25 without any extrapolation procedures.
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FIG. 5. Examples of extrapolation of drag values towards the infinitely-high discretization resolution

assuming the solution convergence rate of −1. The shown results are for the FCC, BCC, and SC

packings of touching spheres. All extrapolation results in this study are obtained with Λ = 0.05.

To quantify accuracy and to compare the results of our numerical simulations with previous

studies, we apply our extrapolation approach to the various packing types and porosities.

Accurate reference values are taken from Table I. Figure 6 shows a strong increase of accuracy

after applying the extrapolation procedure. The results for the touching spheres of low (FCC,

BCC) and moderate (SC) porosities, as well as the porosity of 0.366, outperform standard

bounce back approach by more that an order of magnitude.

For the high porosities with χ = 0.7 that enforces ε ≈ 0.8 for all packing types, the

extrapolation approach performs comparably to the higher-order boundary schemes reported

previously15. We note that in the work of Pan et al.15, the authors used two sets of relaxation

parameters named “set A” and “set B”. We use the data from “set B” that corresponds to the

two-relaxation-times collision operator we adopt here; τ = 0.6 in their terms corresponds to

Λ = 3/16 in this study. Slight tuning of Λ around 0.05 towards smaller values (see Figure 6)

increases accuracy for the high-porosity case, but our primary focus is on the lower-porosity

systems and therefore we stay with a single value of Λ = 0.05.

For the sake of completeness, we note that our attempts to take the large values of Λ (say,

Λ > 10) and apply similar extrapolation approach to negative error region did not result in

any meaningful outcomes. It appears that the error must cross zero first, become positive,

and only then decrease to zero.
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FIG. 6. Relative error in drag force for packings of touching (a–c) and diluted (d-f) spheres. a–c:

Shown are the errors for the extrapolated drag force values (with dsp = dmax
sp ) and the data taken

from other studies: Tables 7, 8, 10 in Khirevich et al.9, as well as Table 130 and Table II40 in Maier

at al. Panel d) depicts errors for the diluted FCC, BCC, SC arrays with the diameter contraction

factor of χ = 0.7. The extrapolated values are compared with the results of Pan et al.15 for the BCC

packing. CLI, MCLI, BFL, POP, QIBB, LIBB, MR refer to the higher-order boundary schemes.

e,f) Error values for the FCC, BCC, SC packings with ε = 0.366.
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V. CONCLUSIONS AND OUTLOOK

In this paper, we have analyzed numerical error of the LBM bounce-back approximation

of incompressible fluid flow and suggested a simple model for the simulation error. Our

approach is based on the existence of at least two error contributions with the linear and

quadratic decay rates of different signs. These error contributions amplify or compensate

each other and, therefore, lead to the very fast (−3 or faster) or slow (slower than −0.5)

transient convergence rates. All of these rates approach the −1 convergence rate sooner or

later. This situation is not limited to LBM and also occurs in classic numerical approaches

such as finite difference method – see error behavior in Figure 3 of Manwart et al.41 as an

example.

The choice of Λ = 0.05 allowed to observe the −1 behavior at lower resolutions (of about

20 lattice nodes per sphere diameter for ε = 0.366, see Figure 4) and perform a linear

extrapolation of drag values. The extrapolation results reduced the typical LBM/BB error by

tens of times at medium resolutions (40 nodes and higher, Figure 6) and allowed to achieve

accuracy of the high-order CLI and MCLI schemes. We note that there are no difficulties

with programming the high-order boundary schemes for simple geometries while developing

a serial program implementation of LBM. However, programming complexity increases for

parallel applications and when dealing with obstacles distributed irregularly in space (for

instance, see subsection 5.1 in30). From this point of view, the suggested extrapolation

approach can be seen as an alternative for improving simulation accuracy in some cases

without modifying flow solver.

An extrapolated average velocity value does not provide accurate three-dimensional

flow fields, but its knowledge can be used, for example, in simulations of hydrodynamic

dispersion24,44. Our preliminary studies suggest that using the extrapolated value of average

velocity to calculate Péclet number improves accuracy of simulations of hydrodynamic

dispersion with random-walk particle tracking method24. This improvement can be attributed

to the fact that variation of Λ moves the location of the zero-velocity boundary in a

systematic way within the simulated geometry. A similar improvement can be obtained after

scaling the Stokes flow velocity components with their accurate average value obtained from

extrapolation.

The approach presented here requires variable resolutions of discretization of the pore space,
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which is not always possible. Micro-CT images that often provide pore space geometry are

usually limited to a single resolution. However, we see this study as a necessary step towards

selecting optimal relaxation parameters in the pore-scale lattice-Boltzmann simulations.
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