
In this study we performed simulations of the effec- and Voronoi spatial tessellations: using coordinates of spheres, the pore space 

tive diffusion and hydrodynamic dispersion in or- is divided into a set of simple geometrical elements, shape of each element is 

dered (crystal) and random sphere packings generated at different porosity quantified, and based on the values of individual elements the resulting scalar 

values. Employed numerical approach resulted in an accurate determination geometrical descriptor is derived. Different nature of the diffusion and hydro-

of the transient and asymptotic transport coefficients. Use of different packing dynamic dispersion processes resulted in correlation with different geometri-

types resulted in collecting a wide range of the transport coefficients, observa- cal descriptors. Descriptors shown in Figures 5d,e and 8b are found empiri-

tion of excellent agreement with experimental, numerical, and analytical re- cally, while the one in Figure 9b is based on the results from integral geometry. 

sults from other studies, and making the following analysis of the pore space Therefore, we believe the approach presented here establishes a systematic 

route towards quantitative structure–transport relationships.independent on the . The pore space was analyzed with packing type Delaunay 
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Figure 4. Effect of the compres-
sion rate value W on the micro-
structure of bulk random packings 
of monosized disks at e = 0.34 ge-
nerated with a Monte Carlo proce-
dure. Closely packed regions are 
colored in red. Closely packed 
disks form close-to-regular trian-
gles on a Delaunay mesh (result-
ing from connecting the centers of 
adjacent disks, see also Figure 8), 
and were identified by the value of 
the maximum edge length D of max

the triangles, with D < 1.06 d  max p

(top), or D < 1.09 d  (bottom); d  max p p

denotes the disk diameter.
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We employed lattice Boltzmann and Random Walk Particle Tracking methods to 

simulate flow and hydrodynamic dispersion in the generated packings. Chosen 

numerical approach allowed us to obtain both transient (Figure 5a) and asymp-

totic dispersion (Figure 5b,c) coefficients with high accuracy. Variation of the 

packing heterogeneity resulted in wide range of the obtained dispersion coeffi-

cients, and consequently very good agreement of our data with various simu-

lated and experimental data available in the literature (Figure 5b,c). 

Wide range of the obtained dispersion coefficients is confirmed by the geo-

metrical analysis of generated packings (performed using Voronoi tessellation, 

see Figure 9): statistical moments of 

the distribution of Voronoi volumes 

(Figure 5d,e) capture packing hetero-

geneity of different packing types and 

reflect their dispersion coefficients.

Finally, dispersion coefficients 

were simulated for the wide range of 

reduced velocities (Figure 6), and 

successfully fitted with the general-

ized Giddings’ equation.
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Figure 5. a) Hydrodynamic dispersion coefficient vs. dispersive time (D  is asymptotic transverse T

dispersion coefficient). b,c) Asymptotic values of the dispersion coefficients for n=100, 500. Com-  

parison with literature data: NMR measurements of Seymour (1997) and Scheven (2007), and 
simulations of Maier (2000,2008) and Augier (2010). d,e) Statistical moments (standard deviation 
s and skewness g) of the probability distribution function of Voronoi volumes in generated packings.
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Figure 6. Reduced plate height values for heterogenous (Rx0.001) and homogenous (Sx2) 
packings. Values are obtained for wide range of reduced velocities, n = 0.5–750, and fitted with the 
generalized Giddings’ equation containing only transchannel and short-range interchannel terms.

Figure 3. Schematic representa-
tion of MC algorithm. Left: initial 
distribution of disks (spheres in 
3D) in ordered lattice; simulation 
box is expanded. Middle: random 
moves of each disk, no overlaps are 
allowed. Right: generated packing. 

We generated packings of randomly-packed equal-sized (monodis-

perse) spheres using Jodrey–Tory and Monte Carlo-based algorithms. 

The generated packings are periodic, isotropic, and have dimensions of 

10d ×10d ×70d  (d  is the sphere diameter), which is sufficient for per-p p p p

forming both statistical analysis of packing microstructure and accurate 

simulation of transport (flow, diffusion, hydrodynamic dispersion) 

within the packing void space. 

JT algorithm randomly distributes sphere centers in the simulation 

domain and iteratively removes overlaps between spheres by spreading 

apart of two closest sphere centers on each iteration. The initial random 

arrangement of sphere centers, the magnitude of closest pair displace-

ment, and packing porosity (e, void space fraction) define the degree of 

heterogeneity (DoH) of the final packing microstructure (Figures 1 and 

2). Due to generation pro-

cedure, JT packings have 

the microstructure signif-

icantly different from the 

one of MC random pack-

ings (for the description of 

algorithm see captions of 

Figures 3 and 4).

Figure 1. Unconfined random 
sphere packings at the random-

loose packing limit (e = 0.46) of 
two types Rx0.001 and Sx2. Shown 
are packing side views (left), sec-
tions of three particle layers as a 
front view (center) and corre-
sponding projections of particle 
centers onto the front plane 
(right). Differences between the 
two packing types are not discern-
ible. Therefore, we use 2D disks to 
illustrate the differences between 
packing types (Figure 2).

Figure 2. Random packings 
of monosized hard disks at e 
= 0.46 generated with dif-
ferent packing protocols. 

Disks are used instead of spheres for better illustration of the difference between pack-
ing types. Generated packings are referred to as “TxM”, where “T” is the initial distri-
bution type and “M” is the magnitude of displacement (for M = 1, packings are 
referred to as just “T”). Figure shows the initial distributions of the disks for S- and R-
types (top) and the generated  packings (bottom). R-packings originate from a ran-
dom uniform initial distribution of disk centers in the simulation box. To generate S-
packings, the simulation box is divided into n equal cubic cells (n is the amount of 
disks) and each disk center is placed in a random position into a cell. Both R- ans S- 
types result in a uniform random distribution of disk centers within the simulation 
box. Magnitude of displacement M determines if the initial distribution of disks is 
preserved (small M) or significantly altered (large M). Color circles help to compare 
the microstructure in the initial distribution and in the generated packing.

MC algorithm locates all spheres on a dilute simple cubic lattice in the 

expanded simulation box (Figure 3). On each iteration, MC moves 

each sphere a short distance in a random direction and rejects moves 

resulting in a sphere overlap. The simulation box is compressed during 

generation (with rate W) until its original dimensions are obtained.

a)

b)

c)

Figure 7. Simulated values of the diffusion 
coefficients (D(t), D ) or tortuosity ( ). a) tran-eff

sient behavior vs. diffusive time. b) influence of 
the packing generation protocol and porosity on 
the asymptotic values of tortuosity; comparison 
with analytical solution for ordered packings. c) 
influence of sphere size distribution on tortuos-
ity (R-type packings were generated using poly-
disperse spheres), and comparison with experi-
mental data from the literature. 

t

Figure 8. Geometrical analysis of the generated packings based on 
the Delaunay spatial tessellation of the packing pore space. a) Sche-
matic illustration of the Delaunay tessellation in 2D (top) and 3D 
(bottom): centers of randomly located disks (spheres) can be inter-
connected with links dividing packing pore space without gaps and 
overlaps into a set of simplexes (triangles in 2D and tetrahedra in 3D).  
An individual simplex (indicated by the red links in the middle panel) 
as well as its faces contain both space points of the pore and of the 
spheres forming this simplex. In case of impermeable spheres diffu-
sion occurs only in the void space of each simplex and through the 
void part of its faces. Right part of the panel a) visualizes a void part of 
a simplex together with its free faces indicated by A . Shape of each i

simplex as well as its void part can be characterized in different ways, and after evaluation of 
several geometric descriptors we found one demonstrating a strong correlation with the 
simulated tortuosity values of random (JT and MC) sphere packings. The descriptor is based 
on the ratio of the minimum (A ) to the maximum (A ) free simplex areas, where the min max

corresponding limiting values are calculated for each simplex from its three in 2D (four in 3D) 
faces. b) standard deviation of the ratio between the minimum (A ) and the maximum void min

face area (A ) of each Delaunay tetrahedron around a pore. c,d) Comparison between the max

porosity-scaling of the tortuosity and geometric descriptor s(A /A ) for the generated min max

packing types. Data are shown normalized to the Rx0.001-packing type.

a)

b)

c) d)

Figure 9. Geometrical analysis of sphere packings based on the Voro-
noi tessellation. a) Schematic illustration of the Voronoi tessellation 
in 2D (top) and 3D (bottom). Middle panel: yellow polyhedra 
indicates Voronoi region of the green disk (sphere in 3D), and con-
tains space points closer to this disk than to any of its neighbors. Gray 
shaded region denoted as the sub-Voronoi region is the contribution of 
one of the green disk neighbors to the Voronoi region. Right panel: 
sub-Voronoi region is formed by free (S ) and solid (S ) boundaries. free solid

Using basic results from the integral geometry (Bénichou (2005)), the 
following geometrical descriptor can be derived:

iiwhere V   is the volume and S   is the free and solid surfaces of i-free,solid

th sub-Voronoi region in a packing, and chevrons denote averaging 
over all sub-Voronoi regions in each generated random sphere packing. b) Dependence of the geometrical descriptor M on the porosity and packing type. Comparing the values of M with tortuosity 
values shown Figure 7b, a strong anti-correlation can be seen for all packings types, i.e. for generated random packings as well as ordered body-centered and face-centered cubic crystals (BCC and FCC).

a)
b)

M =
V i

hV ii

Sifree + Sisolid
Sifree

Effective diffusion coefficients                                were simulated using 

random walk particle tracking method. Use of this method in a combina-

tion with supercomputing facilities allowed us to a) track time evolution 

of the diffusion coefficient up to asymptotic limit (Figure 7a), and b) ob-

tain accurate values of the asymptotic (effective) diffusion coefficient: see 

comparison with analytical solution in Figure 7b. Further, geometry of 

the packings was analyzed using Delaunay and Voronoi spatial tessella-

tions. The idea behind this analysis is to divide packing pore space into a 

set of simple geometrical elements, analyze geometry of these elements, 

and find suitable geometrical descriptors which correlate with the 

effective diffusion coefficients (or tortuosity values). Figure 8 shows an 

empirically found geometrical descriptor originating from the Delaunay 

tessellation, while Figure 9 is dedicated to the Voronoi tessellation-based 

descriptor which is derived using basic results from the integral geometry 

(Benichou (2005)), and demonstrates a strong anti-correllation with all 

diffusion coefficients of random and crystal packings.

tgen

Quantification of the transport processes in packed pore space makes it very difficult to perform systematic experimental studies of We analyze pore space of the generated packings using spatial tessellations 

chromatographic columns based on the column transport in the columns, and computer simulations are the only possibility to and provide scalar geometrical descriptors which are i) independent on the pack-

pore space geometry is a long-standing topic in chromatography, and has been perform such studies. In this work we generate isotropic periodic random sphere ing generation protocol (i.e., can be applied for any sphere packing) and ii) in 

addressed via simulations and experimental studies. This topic is crucial on the packings of equal-sized spheres over wide range of porosities (between random strong correlation with the effective diffusion and hydrodynamic dispersion coef-

way to understand, and, therefore, control and optimize the packing process of close and random lose packing limits) using six packing protocols, and perform ficients. Our results demonstrate strong influence of the generation protocol on 

chromatographic columns which is now considered an art rather than a science. accurate transport simulations in the packing void space utilizing high- transport coefficients, and, as a result, that the packing porosity cannot be used 

The complexity of the column packing procedure as well as resulting column performance computing facilities. as the only parameter characterizing transport in the chromatographic columns.

D =D(t!1)/Deff  m
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